Skip to main content

Big Data Engineering (5 cr)

Code: TT00CN70-3002

General information


Enrollment

29.11.2023 - 18.01.2024

Timing

08.01.2024 - 30.04.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages

  • English

Seats

10 - 50

Degree programmes

  • Degree Programme in Information and Communication Technology
  • Degree Programme in Business Information Technology
  • Degree Programme in Information and Communications Technology

Teachers

  • Tommi Tuomola

Teacher in charge

Tommi Tuomola

Groups

  • PTIETS22deai
    PTIETS22 Data Engineering and Artificial Intelligence
  • PTIVIS22I
    Data Engineering and AI
  • 16.01.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 23.01.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 26.01.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 30.01.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 02.02.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 06.02.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 09.02.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 13.02.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 16.02.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 27.02.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 01.03.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 05.03.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 08.03.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 12.03.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 15.03.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 19.03.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 22.03.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 26.03.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 02.04.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 05.04.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 09.04.2024 09:00 - 11:00, Luento, Big Data Engineering TT00CN70-3002
  • 12.04.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002
  • 19.04.2024 10:00 - 12:00, Harjoitukset, Big Data Engineering TT00CN70-3002

Objective

After completing the course the student can:
- describe basic solutions for data architectures and big data
- select and use suitable data architecture
- apply ETL process and tools for handling of big data

Content

Architecture and Components of Big Data Frameworks
ETL process with Big Data for batch and streaming
Practical work with suitable tools and frameworks

Materials

Teacher provided lecture material
Supporting public online material
Teacher provided virtual machines
All needed material (or at least a link to them) will be available in itslearning.

Teaching methods

Contact learning, practical exercises, independent study

International connections

Given examples and exercises support each topic studied during the lectures. Additional material in the form of tutorials and reliable information sources is provided.

Student workload

Contact hours 56 h
Inpendent studying 79h, including:
- Studying the course material
- Completing exercises
- Project

Content scheduling

-The basic idea of data engineering methods and pipelines
-different components
-integration of said components (MQ systems)
-data engineering frameworks (Apache family)
-The goal of the course is to be able to build a data pipeline from start to finish

Further information

Itslearning and contact classes are the main communication channels used on this course.

The student is required to have a computer capable of running a simple Ubuntu virtual machine.

Evaluation scale

H-5

Assessment methods and criteria

Homework exercises returned throughout the course
Small project at the end of the course