Processing Technologies (5 cr)
Code: 5021224-3005
General information
Enrollment
02.12.2023 - 14.01.2024
Timing
11.01.2024 - 21.03.2024
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Campus
Lemminkäisenkatu
Teaching languages
- Finnish
Degree programmes
- Degree Programme in Biotechnology and Chemical Engineering
Teachers
- Juha Nurmio
- Liisa Lehtinen
Groups
-
PBIOKES21
-
PBIOKES21materiaaliPBIOKES21materiaali
- 11.01.2024 09:00 - 11:00, Materials 1 Introduction, Processing Technologies, Basics of Materials Technology
- 18.01.2024 09:00 - 16:00, Processing Technologies 5021224-3005
- 18.01.2024 09:00 - 11:00, Processing Technologies 5021224-3005
- 25.01.2024 09:00 - 11:00, Processing Technologies 5021224-3005
- 25.01.2024 09:00 - 16:00, Processing Technologies 5021224-3005
- 01.02.2024 09:00 - 16:00, Processing Technologies 5021224-3005
- 01.02.2024 09:00 - 11:00, Processing Technologies 5021224-3005
- 08.02.2024 09:00 - 16:00, Processing Technologies 5021224-3005
- 08.02.2024 09:00 - 11:00, Processing Technologies 5021224-3005
- 15.02.2024 09:00 - 16:00, Processing Technologies 5021224-3005
- 15.02.2024 09:00 - 11:00, Processing Technologies 5021224-3005
- 26.02.2024 09:00 - 11:00, Intro to Selection of materials, Rheology
- 29.02.2024 09:00 - 11:00, Processing Technologies 5021224-3005
- 29.02.2024 09:00 - 16:00, Processing Technologies 5021224-3005
- 14.03.2024 09:00 - 16:00, Rheology, Processing Technologies 5021224-3005
Objective
The participants are able to describe manufacturing techniques and are able to choose the most appropriate technique based on resource efficiency. The participants are able to run basic plastics processing devices and able to plan and execute trials. The participants are able to describe the effect of temperature and output on polymers’ rheology.
Content
The students familiarise themselves with typical plastics manufacturing techniques emphasizing resource efficiency and circular economies. The students learn to plan and execute processing trials of plastics. The students familiarize themselves with rheology of polymer melt.
Issues: plastics processing techniques, operating plastics processing devices, such as extruder, injection moulding machine and 3D-printer, rheology of polymer melt.
The course is mainly a laboratory course with strong connection to topical RDI-project.
Materials
Materials in Itslearning
Students gather their own material.
Teaching methods
Project based learning
Task based learning
Research
Literature study
Web based material
International connections
International studies
Team learning
Based on working-life needs
Project work
Completion alternatives
Individual plans can be discussed and agreed together with Liisa Lehtinen.
Student workload
The participants learn to use extruder and Injection moulding machines.
-The groups will manufacture test bars from plastic waste. Task includes following steps: working plan (Word), trial runs and test results (Excel) and report (PowerPoint).
-Test components for Selection of Materials course. Each group will manufacture at least 10 test bars and 10 meters filament for further testing.
-Rheology test with extruder
Content scheduling
Content:
Plastics prosessing tecnologies
Rheology
Injection moulding and extrusion runs in laboratory
Tensile testing.
If there are less than 10 participating students, the course will be organized as RDI-version. In that case the tasks will be connected to topical RDI-projects. Currently our projects are dealing with additive manufacturing (3D-prinitng) and degradation of biodegradable plastics.
Further information
The course will be held in English.
Prerequisites: 2 years in chemical engineering studies or similar know-how, such as 2 years work in laboratory environment or in technical field or advanced syllabus in mathematics, physics and chemistry
Evaluation scale
H-5