Data-analytiikka ja Koneoppiminen (5 op)
Toteutuksen tunnus: 3011633-3005
Toteutuksen perustiedot
- Ilmoittautumisaika
-
30.11.2022 - 19.01.2023
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
09.01.2023 - 28.04.2023
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Tekniikka ja liiketoiminta
- Toimipiste
- Kupittaan kampus
- Opetuskielet
- englanti
- Paikat
- 10 - 35
- Opettajat
- Golnaz Sahebi
- Matti Kuikka
- Opintojakso
- 3011633
Arviointiasteikko
H-5
Sisällön jaksotus
Introduction to machine learning:
- data exploration
- data processing and preparation
- model training, selection, and evaluation
- taking the model into production
- supervised learning
- unsupervised learning
- visualization
We proceed in general according to the chapters in the course book.
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Course book:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)
We read chapters 1-10 of the book of menus. They have about 300 pages, but some are skipped over.
The course book can be read in electronic form from our institution's eBook Central database.
The course also has reading material, which will be announced during the course.
Kansainvälisyys
The course includes approximately 12 guided working and theory sessions, 10 personal practice tasks and group work.
*
Group work is done in groups of 3-4 people outside of guidance sessions. The group sets aside 15 minutes outside of guidance sessions to present the group work.