Siirry suoraan sisältöön

Introduction to Data Engineering and AI Technologies (5 op)

Toteutuksen tunnus: MS00CN43-3002

Toteutuksen perustiedot


Ilmoittautumisaika
02.07.2024 - 16.09.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
16.09.2024 - 31.12.2024
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Opetuskielet
suomi
englanti
Koulutus
Insinööri (ylempi AMK), Data Engineering and AI
Tradenomi (ylempi AMK), Data Engineering and AI
Master of Business Administration, Interactive Technologies
Opettajat
Golnaz Sahebi
Ryhmät
YDATIS24
Insinööri (ylempi AMK), Data Engineering and AI
YDATTS24
Tradenomi (ylempi AMK), Data Engineering and AI
YINTBS24
Master of Business Administration, Interactive Technologies
Opintojakso
MS00CN43

Toteutuksella on 4 opetustapahtumaa joiden yhteenlaskettu kesto on 13 t 0 min.

Aika Aihe Tila
Ma 16.09.2024 klo 08:15 - 11:30
(3 t 15 min)
Introduction to Data Engineering and AI Technologies MS00CN43-3002
EDU_2027 Frans muunto byod
Ti 08.10.2024 klo 08:15 - 11:30
(3 t 15 min)
Introduction to Data Engineering and AI Technologies MS00CN43-3002
EDU_1001 Dromberg Esitystila byod
Ma 04.11.2024 klo 08:15 - 11:30
(3 t 15 min)
Introduction to Data Engineering and AI Technologies MS00CN43-3002
EDU_4071 Teoriatila muunto byod
Ma 02.12.2024 klo 08:15 - 11:30
(3 t 15 min)
Introduction to Data Engineering and AI Technologies MS00CN43-3002
EDU_4071 Teoriatila muunto byod
Muutokset varauksiin voivat olla mahdollisia.

Arviointiasteikko

H-5

Sisällön jaksotus

Course Outline and Schedule: (preplan)
Session 1: Introduction to the Course, Data, and Data Preprocessing:
• Project overview and requisites
• Initiation of project's initial phase: Data preprocessing and visualization (assignment 1)
Session 2: Machine Learning I
• Students' presentations showcasing outputs and implementation of the first assignment
• Commencement of phase two: Supervised and unsupervised learning (assignment 2)
Session 3: Machine Learning II
• Students' presentations showcasing outputs and implementation of the second assignment
• Tuning and optimizing your Machine Learning algorithms (assignment 3)
Session 4: Students' presentations showcasing outputs and implementation of the third assignment, followed by discussions encompassing all project phases.

Tavoitteet

After completing the course, the student can:
- describe basic concepts and processes related to Data Engineering and AI

Sisältö

- Data Engineering process
- Basics of AI
- Fields and evolution of AI
- Big data
- Basics of Machine Learning

Oppimateriaalit

Course book:

Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)

The course book can be read in electronic form from our institution's eBook Central database.

Additionally, some other materials will be available via the learning environment (ITS).

Opetusmenetelmät

- Short lectures are delivered by the teacher (theory and practice)
- Self-study tasks (theory and practice)
- Practical classwork
- Teamwork Project (including three assignments)

Tenttien ajankohdat ja uusintamahdollisuudet

No exam

Opiskelijan ajankäyttö ja kuormitus

Contact hours:
- 4 times 3h theory and practice: 4 x 4h = 12 hours

Assignments for the final project: approximately 118 hours

Total: approximately: 130 hours

Lisätiedot

Qualifications:
Before taking an "Introduction to Data Engineering with Python" course, students typically need a foundational understanding of several key areas. Here are the prerequisite courses and topics:

1. Python Programming: Proficiency in basic Python syntax and programming constructs, understanding of Object-Oriented Programming (OOP) concepts.

2. Data Management: Experience with data manipulation libraries such as Pandas for handling datasets. Data manipulation involves transforming data, cleaning it, organizing it, and preparing it for analysis.

3. Basic Linear Algebra: Understanding of vectors, matrices, and basic operations on them.

4. Statistics and Probability: Knowledge of descriptive statistics (mean, median, mode, variance, etc.), and familiarity with probability distributions.

Siirry alkuun