Siirry suoraan sisältöön

Data Analytics and Machine Learning (5 op)

Toteutuksen tunnus: TT00CO52-3003

Toteutuksen perustiedot


Ilmoittautumisaika
04.12.2024 - 17.01.2025
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
17.01.2025 - 30.04.2025
Toteutus on käynnissä.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
englanti
Paikat
0 - 60
Koulutus
Degree Programme in Information and Communications Technology
Tietojenkäsittelyn koulutus
Tieto- ja viestintätekniikan koulutus
Opettajat
Matti Kuikka
Golnaz Sahebi
Ajoitusryhmät
Pienryhmä 1 (Koko: 30 . Avoin AMK : 0.)
Pienryhmä 2 (Koko: 30 . Avoin AMK : 0.)
Ryhmät
PTIVIS23I
Data Engineering and Artificial Intelligence
PTIETS23deai
Data Engineering and Artificial Intelligence
Pienryhmät
Pienryhmä 1
Pienryhmä 2
Opintojakso
TT00CO52

Toteutuksella on 35 opetustapahtumaa joiden yhteenlaskettu kesto on 72 t 45 min.

Aika Aihe Tila
Pe 17.01.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
EDU_1002 Moriaberg Esitystila byod
Pe 24.01.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
EDU_1002 Moriaberg Esitystila byod
Pe 24.01.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 24.01.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 31.01.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
EDU_1002 Moriaberg Esitystila byod
Pe 31.01.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 31.01.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 07.02.2025 klo 14:00 - 16:00
(2 t 0 min)
CANCELLED !!! Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 14.02.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_C1035_Delta DELTA
Pe 14.02.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 14.02.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 28.02.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_B1026_Gamma GAMMA
Pe 28.02.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 28.02.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 07.03.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_C1035_Delta DELTA
Pe 07.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 07.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 14.03.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_C1035_Delta DELTA
Pe 14.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2003 Erik muunto byod
Pe 14.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 21.03.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_C1035_Delta DELTA
Pe 21.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 21.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 28.03.2025 klo 12:15 - 15:00
(2 t 45 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_B1026_Gamma GAMMA
Pe 28.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 28.03.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2003 Erik muunto byod
Pe 04.04.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
ICT_C1035_Delta DELTA
Pe 04.04.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 04.04.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 11.04.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
EDU_1002 Moriaberg Esitystila byod
Pe 11.04.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Pe 11.04.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
EDU_2002 Ivar muunto byod
Pe 25.04.2025 klo 12:00 - 14:00
(2 t 0 min)
Lecture, Data Analytics and Machine Learning TT00CO52-3003
EDU_1002 Moriaberg Esitystila byod
Pe 25.04.2025 klo 12:00 - 16:00
(4 t 0 min)
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003
ICT_C2027 IT telakka
Pe 25.04.2025 klo 14:00 - 16:00
(2 t 0 min)
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003
EDU_2027 Frans muunto byod
Muutokset varauksiin voivat olla mahdollisia.

Arviointiasteikko

H-5

Sisällön jaksotus

+ The course includes approximately 14 theory sessions and 14 guided practice sessions, 9 personal homework assignments, 8-9 classwork assignment and a teamwork final project

+ Final project is done in groups of 2-3 people outside of guidance sessions. The group sets aside 15 minutes to present the group work during the last session.

+ Content scheduling (Note: this is a preliminary plan and may be adjusted based on class performance.)
- Week 03: Course Introduction (2h)
- Week 04: Landscape of machine learning (3 hours split into separate theory and practice sessions)
- Week 05: Data exploration (3 hours split into separate theory and practice sessions)
- Week 06: Data preparation (3 hours split into separate theory and practice sessions)
- Week 07: Model training, selection, and evaluation (3 hours split into separate theory and practice sessions)
- Week 08: Winter break - Visualization (self-study)
- Week 09: Demonstrations of Exercises 1 – 4 (3h)
- Week 10: Classification (3 hours split into separate theory and practice sessions)
- Week 11: Training models (3 hours split into separate theory and practice sessions)
- Week 12: Decision trees (3 hours split into separate theory and practice sessions)
- Week 13: Unsupervised learning (3 hours split into separate theory and practice sessions)
- Week 14: Guidance to team work (3 hours split into separate theory and practice sessions)
- Week 15: Introduction to Neural networks (3 hours split into separate theory and practice sessions)
- Week 16: Demonstrations of Exercises 5 – 9 (3h)
- Week 17: Team work presentations (3h)

Tavoitteet

After completing the course the student:
- Can define the main concepts related to machine learning
- Understands the value and the drivers for machine learning
- Can describe the processes of machine learning
- Can use some tools for data analytics and machine learning

Sisältö

Machine learning process and methods
Practical work

Oppimateriaalit

Course book:

Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
3rd Edition.
Publisher : O'Reilly Media;
(2022)

We study chapters 1, 2, 3, 4, 6, 9, and 10 of the book. They have about 300 pages, but some are skipped over.

The course book can be read in electronic form from our institution's eBook Central database.

The course also has reading material, which will be announced during the course.

Opetusmenetelmät

- Participating in lectures (theory and practice)
- Learning through hands-on programming (classwork assignments)
- Completing homework assignments
- Interacting with the teacher and classmates
- Enhancing knowledge through teamwork projects
- Following the flipped-classroom model (pre-session self-study of theoretical concepts followed by in-class practical application)

Tenttien ajankohdat ja uusintamahdollisuudet

+ No exam, retake not possible after the publication of the final assessment/course grade

Kansainvälisyys

- The course includes approximately 28 (1.5 hours) theory and practice sessions, where students engage with practical tasks.
- Homework exercises will be assigned, with some parts demonstrated during contact sessions.
- Classwork assignments will be given during the practice sessions and must be completed and submitted within those hours to earn points.
- A teamwork project will be introduced in the second month, requiring students to apply their teamwork skills and the knowledge gained from the course to implement their final project.
- A flipped-classroom model may be used for some lectures, where students study the theoretical content at home and focus on practical implementation and discussions during class.

Toteutuksen valinnaiset suoritustavat

The practical work and exercises are primarily conducted using Python, including its DA and ML-related libraries, within Jupyter Notebook.

Opiskelijan ajankäyttö ja kuormitus

+ Student Responsibilities:
1. Class Participation and doing the classwork assignments:
- The completion of in-class assignments, which must be submitted during class hours.
2. Homework Assignments:
- Completing approximately 9 individual homework assignments, partially demonstrated during contact sessions. The exact number of the assignments will be announced at the first lecture.
3. Final Project:
- A groupwork project (2-3 students) to be completed over weeks 46 & 47, culminating in a presentation in week 48.

+ Student workload:
Contact hours (approximately):
- One introductionary session: 2h
- 13 times 3h theory and practice: 13 x 3h = 39 hours
- Final projects and presentations: 24 hours
- Home work: approximately 75 hours

Total: approximately: 140 hours

Lisätiedot

+ Qualifications/Prerequisites:
Student enrollment in the course will not be accepted by the instructor if they have not passed the following prerequisite courses:
- Python programming skills and skills in utilizing Pandas for data manipulation and Numpy for numerical operations and array handling
- Basic knowledge of probability, statistics and linear algebra

+ Communication Channel:
Itslearning and email

Siirry alkuun