Skip to main content

Strength of materialsLaajuus (5 cr)

Code: 5031284

Credits

5 op

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Enrollment

02.12.2024 - 16.02.2025

Timing

01.01.2025 - 31.07.2025

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

0 - 30

Degree programmes
  • Degree Programme in Construction and Municipal Engineering
Teachers
  • Matti Teittinen
Groups
  • MRAKIS24

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Evaluation scale

H-5

Enrollment

03.08.2024 - 06.09.2024

Timing

02.09.2024 - 18.12.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Mechanical and Production Engineering
Teachers
  • Tommi Metso
Teacher in charge

Tommi Metso

Groups
  • PKONTK24
  • PKONTK24A
    PKONTK24A
  • PKONTK24B
    PKONTK24B

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Materials

Lectures are based on:
Tapio Salmi, Sami Pajunen: Lujuusoppi. Pressus OY Tampere 2010
Extra material
Karhunen, Lassila, Pyy, Räsänen, Saikkonen ja Suosara: Lujuusoppi, Otatieto Oy
e-kirjoja linkki löytyy Optimasta
Case, John, et al. Strength of Materials and Structures, Elsevier Science & Technology, 1999.
Hopkins, Dale, and Surya Patnaik. Strength of Materials : A New Unified Theory for the 21st Century, Elsevier Science & Technology, 2003.
Hearn, E. J.. Mechanics of Materials : An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Elsevier Science & Technology, 1997.
Bolton, W. C., and Ivan Koppel. Mechanical Science, John Wiley & Sons, Incorporated, 2006.

Teaching methods

The course is implemented via Flipped Learning method. All the lectures are available via links in optima Lujuusopin perusteet workspace. It is students duty to get to know the material beforehand.

Exam schedules

The exact date of the exam can be found in the implementation plan of the learning portal.

International connections

Flipped learning

Completion alternatives

solving exercises independently remotely and return them admitted before the deadline.

Student workload

During the course about 30 strength of materials exercises is solved in contact hours.

Content scheduling

After completing the course the student:

Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.
Stresses and deformations in axially loaded members
Pure shear stresses in pins and screws
the principles of torsional stress
Force and moment diagrams in beam bending
Stress section modulus and bending stress in beam bending
The exact timetable can be found from ITsLearning portal.

Further information

https://turkuamk.itslearning.com/

Evaluation scale

H-5

Assessment methods and criteria

Passing the course (grade 1) is possible by completing remote assignments. See the learning portal for more detailed instructions. Achieving better grades requires taking the exam.

Assessment criteria, fail (0)

The total points of the exercises are not enough to pass. 40% of the points have not been achieved in the exam.

Assessment criteria, satisfactory (1-2)

The total points of the exam and assignments exceed 40%.

Assessment criteria, good (3-4)

The total points of the exam and assignments exceed 80%.

Assessment criteria, excellent (5)

The total points of the exam and assignments exceed 87%.

Enrollment

01.12.2023 - 01.03.2024

Timing

18.03.2024 - 28.05.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Mechanical Engineering
Teachers
  • Tommi Metso
Teacher in charge

Tommi Metso

Groups
  • MKONTS23

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Materials

Lectures are based on:
Tapio Salmi, Sami Pajunen: Lujuusoppi. Pressus OY Tampere 2010
Extra material
Karhunen, Lassila, Pyy, Räsänen, Saikkonen ja Suosara: Lujuusoppi, Otatieto Oy
e-kirjoja linkki löytyy Optimasta
Case, John, et al. Strength of Materials and Structures, Elsevier Science & Technology, 1999.
Hopkins, Dale, and Surya Patnaik. Strength of Materials : A New Unified Theory for the 21st Century, Elsevier Science & Technology, 2003.
Hearn, E. J.. Mechanics of Materials : An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Elsevier Science & Technology, 1997.
Bolton, W. C., and Ivan Koppel. Mechanical Science, John Wiley & Sons, Incorporated, 2006.

Teaching methods

The course is implemented via Flipped Learning method. All the lectures are available via links in optima Lujuusopin perusteet workspace. It is students duty to get to know the material beforehand.

International connections

Flipped learning

Completion alternatives

solving exercises independently remotely and return them admitted before the deadline.

Student workload

During the course about 30 strength of materials exercises is solved in contact hours.

Content scheduling

After completing the course the student:

Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.
Stresses and deformations in axially loaded members
Pure shear stresses in pins and screws
the principles of torsional stress
Force and moment diagrams in beam bending
Stress section modulus and bending stress in beam bending
The exact timetable can be found from ITsLearning strength of the materials implementation.

Further information

https://turkuamk.itslearning.com/

Evaluation scale

H-5

Assessment methods and criteria

Passing the course (grade 1) is possible by completing remote assignments. See the learning portal for more detailed instructions. Achieving better grades requires taking the exam.

Assessment criteria, fail (0)

The total points of the exercises are not enough to pass. 40% of the points have not been achieved in the exam.

Assessment criteria, satisfactory (1-2)

The total points of the exam and assignments exceed 40%.

Assessment criteria, good (3-4)

The total points of the exam and assignments exceed 80%.

Assessment criteria, excellent (5)

The total points of the exam and assignments exceed 87%.

Enrollment

01.12.2023 - 08.01.2024

Timing

08.01.2024 - 31.05.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Mechanical and Production Engineering
Teachers
  • Tommi Metso
Teacher in charge

Tommi Metso

Groups
  • PKONTS23A
    PKONTS23A
  • PKONTS23B
    PKONTS23B
  • PKONTS23

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Materials

Lectures are based on:
Tapio Salmi, Sami Pajunen: Lujuusoppi. Pressus OY Tampere 2010
Extra material
Karhunen, Lassila, Pyy, Räsänen, Saikkonen ja Suosara: Lujuusoppi, Otatieto Oy
e-kirjoja linkki löytyy Optimasta
Case, John, et al. Strength of Materials and Structures, Elsevier Science & Technology, 1999.
Hopkins, Dale, and Surya Patnaik. Strength of Materials : A New Unified Theory for the 21st Century, Elsevier Science & Technology, 2003.
Hearn, E. J.. Mechanics of Materials : An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Elsevier Science & Technology, 1997.
Bolton, W. C., and Ivan Koppel. Mechanical Science, John Wiley & Sons, Incorporated, 2006.

Teaching methods

The course is implemented via Flipped Learning method. All the lectures are available via links in optima Lujuusopin perusteet workspace. It is students duty to get to know the material beforehand.

Exam schedules

The exact date of the exam can be found in the implementation plan of the learning portal.

International connections

Flipped learning

Completion alternatives

solving exercises independently remotely and return them admitted before the deadline.

Student workload

During the course about 30 strength of materials exercises is solved in contact hours.

Content scheduling

After completing the course the student:

Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.
Stresses and deformations in axially loaded members
Pure shear stresses in pins and screws
the principles of torsional stress
Force and moment diagrams in beam bending
Stress section modulus and bending stress in beam bending
The exact timetable can be found from ITsLearning portal.

Further information

https://turkuamk.itslearning.com/

Evaluation scale

H-5

Assessment methods and criteria

Passing the course (grade 1) is possible by completing remote assignments. See the learning portal for more detailed instructions. Achieving better grades requires taking the exam.

Assessment criteria, fail (0)

The total points of the exercises are not enough to pass. 40% of the points have not been achieved in the exam.

Assessment criteria, satisfactory (1-2)

The total points of the exam and assignments exceed 40%.

Assessment criteria, good (3-4)

The total points of the exam and assignments exceed 80%.

Assessment criteria, excellent (5)

The total points of the exam and assignments exceed 87%.

Enrollment

02.12.2023 - 31.01.2024

Timing

01.01.2024 - 31.07.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Construction and Municipal Engineering
Teachers
  • Matti Teittinen
Groups
  • MRAKIS23

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Evaluation scale

H-5

Enrollment

01.06.2023 - 04.09.2023

Timing

18.08.2023 - 17.12.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Mechanical and Production Engineering
Teachers
  • Tommi Metso
Teacher in charge

Tommi Metso

Groups
  • PKONTK23B
    PKONTK23B
  • PKONTK23
  • PKONTK23A
    PKONTK23A

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Materials

Lectures are based on:
Tapio Salmi, Sami Pajunen: Lujuusoppi. Pressus OY Tampere 2010
Extra material
Karhunen, Lassila, Pyy, Räsänen, Saikkonen ja Suosara: Lujuusoppi, Otatieto Oy
e-kirjoja linkki löytyy Optimasta
Case, John, et al. Strength of Materials and Structures, Elsevier Science & Technology, 1999.
Hopkins, Dale, and Surya Patnaik. Strength of Materials : A New Unified Theory for the 21st Century, Elsevier Science & Technology, 2003.
Hearn, E. J.. Mechanics of Materials : An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Elsevier Science & Technology, 1997.
Bolton, W. C., and Ivan Koppel. Mechanical Science, John Wiley & Sons, Incorporated, 2006.

Teaching methods

The course is implemented via Flipped Learning method. All the lectures are available via links in optima Lujuusopin perusteet workspace. It is students duty to get to know the material beforehand.

Exam schedules

The exact date of the exam can be found in the implementation plan of the learning portal.

International connections

Flipped learning

Completion alternatives

solving exercises independently remotely and return them admitted before the deadline.

Student workload

During the course about 30 strength of materials exercises is solved in contact hours.

Content scheduling

After completing the course the student:

Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.
Stresses and deformations in axially loaded members
Pure shear stresses in pins and screws
the principles of torsional stress
Force and moment diagrams in beam bending
Stress section modulus and bending stress in beam bending
The exact timetable can be found from ITsLearning portal.

Evaluation scale

H-5

Assessment methods and criteria

Passing the course (grade 1) is possible by completing remote assignments. See the learning portal for more detailed instructions. Achieving better grades requires taking the exam.

Assessment criteria, fail (0)

The total points of the exercises are not enough to pass. 40% of the points have not been achieved in the exam.

Assessment criteria, satisfactory (1-2)

The total points of the exam and assignments exceed 40%.

Assessment criteria, good (3-4)

The total points of the exam and assignments exceed 80%.

Assessment criteria, excellent (5)

The total points of the exam and assignments exceed 87%.

Enrollment

01.01.2023 - 22.03.2023

Timing

23.03.2023 - 02.06.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Mechanical and Production Engineering
Teachers
  • Tommi Metso
Teacher in charge

Tommi Metso

Groups
  • MKONTS22

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Materials

Lectures are based on:
Tapio Salmi, Sami Pajunen: Lujuusoppi. Pressus OY Tampere 2010
Extra material
Karhunen, Lassila, Pyy, Räsänen, Saikkonen ja Suosara: Lujuusoppi, Otatieto Oy
e-kirjoja linkki löytyy Optimasta
Case, John, et al. Strength of Materials and Structures, Elsevier Science & Technology, 1999.
Hopkins, Dale, and Surya Patnaik. Strength of Materials : A New Unified Theory for the 21st Century, Elsevier Science & Technology, 2003.
Hearn, E. J.. Mechanics of Materials : An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Elsevier Science & Technology, 1997.
Bolton, W. C., and Ivan Koppel. Mechanical Science, John Wiley & Sons, Incorporated, 2006.

Teaching methods

The course is implemented via Flipped Learning method. All the lectures are available via links in optima Lujuusopin perusteet workspace. It is students duty to get to know the material beforehand.

International connections

Flipped learning

Completion alternatives

solving exercises independently remotely and return them admitted before the deadline.

Student workload

During the course about 30 strength of materials exercises is solved in contact hours.

Content scheduling

After completing the course the student:

Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.
Stresses and deformations in axially loaded members
Pure shear stresses in pins and screws
the principles of torsional stress
Force and moment diagrams in beam bending
Stress section modulus and bending stress in beam bending
The exact timetable can be found from ITsLearning strength of the materials implementation.

Evaluation scale

H-5

Assessment methods and criteria

Passing the course (grade 1) is possible by completing remote assignments. See the learning portal for more detailed instructions. Achieving better grades requires taking the exam.

Assessment criteria, fail (0)

The total points of the exercises are not enough to pass. 40% of the points have not been achieved in the exam.

Assessment criteria, satisfactory (1-2)

The total points of the exam and assignments exceed 40%.

Assessment criteria, good (3-4)

The total points of the exam and assignments exceed 80%.

Assessment criteria, excellent (5)

The total points of the exam and assignments exceed 87%.

Enrollment

02.12.2022 - 31.01.2023

Timing

01.01.2023 - 26.05.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Construction and Municipal Engineering
  • Degree Programme in Mechanical and Production Engineering
Teachers
  • Kalevi Vesterinen
Groups
  • MRAKIS22

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Evaluation scale

H-5

Enrollment

02.12.2022 - 15.01.2023

Timing

01.01.2023 - 31.05.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Degree programmes
  • Degree Programme in Mechanical and Production Engineering
Teachers
  • Tommi Metso
Teacher in charge

Tommi Metso

Groups
  • PKONTS22B
    PKONTS22B
  • PKONTS22A
    PKONTS22A
  • PKONTS22

Objective

After completing the course the student:
- Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
- Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.

Content

- Stresses and deformations in axially loaded members
- Pure shear stresses in pins and screws
- Stress section modulus, shear stress and twisting angle in torque shafts.
- Force and moment diagrams in beam bending
- Stress section modulus and bending stress in beam bending
- Shear stresses in beam bending

Materials

Lectures are based on:
Tapio Salmi, Sami Pajunen: Lujuusoppi. Pressus OY Tampere 2010
Extra material
Karhunen, Lassila, Pyy, Räsänen, Saikkonen ja Suosara: Lujuusoppi, Otatieto Oy
e-kirjoja linkki löytyy Optimasta
Case, John, et al. Strength of Materials and Structures, Elsevier Science & Technology, 1999.
Hopkins, Dale, and Surya Patnaik. Strength of Materials : A New Unified Theory for the 21st Century, Elsevier Science & Technology, 2003.
Hearn, E. J.. Mechanics of Materials : An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Elsevier Science & Technology, 1997.
Bolton, W. C., and Ivan Koppel. Mechanical Science, John Wiley & Sons, Incorporated, 2006.

Teaching methods

The course is implemented via Flipped Learning method. All the lectures are available via links in optima Lujuusopin perusteet workspace. It is students duty to get to know the material beforehand.

Exam schedules

The exact date of the exam can be found in the implementation plan of the learning portal.

International connections

Flipped learning

Completion alternatives

solving exercises independently remotely and return them admitted before the deadline.

Student workload

During the course about 30 strength of materials exercises is solved in contact hours.

Content scheduling

After completing the course the student:

Understands the meaning of the strength analysis with respect to safety of structures and in economical use of materials.
Can design relatively simple structures where the force quantities can be evaluated by means of statics equilibrium.
Stresses and deformations in axially loaded members
Pure shear stresses in pins and screws
the principles of torsional stress
Force and moment diagrams in beam bending
Stress section modulus and bending stress in beam bending
The exact timetable can be found from ITsLearning portal.

Evaluation scale

H-5

Assessment methods and criteria

Passing the course (grade 1) is possible by completing remote assignments. See the learning portal for more detailed instructions. Achieving better grades requires taking the exam.

Assessment criteria, fail (0)

The total points of the exercises are not enough to pass. 40% of the points have not been achieved in the exam.

Assessment criteria, satisfactory (1-2)

The total points of the exam and assignments exceed 40%.

Assessment criteria, good (3-4)

The total points of the exam and assignments exceed 80%.

Assessment criteria, excellent (5)

The total points of the exam and assignments exceed 87%.