Skip to main content

Game Physics (5 cr)

Code: 5051233-3004

General information


Enrollment
01.08.2023 - 30.09.2023
Registration for the implementation has ended.
Timing
31.08.2023 - 31.12.2023
Implementation has ended.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Engineering and Business
Campus
Kupittaa Campus
Teaching languages
English
Seats
20 - 60
Degree programmes
Degree Programme in Information and Communications Technology
Degree Programme in Information and Communication Technology
Teachers
David Oliva
Teacher in charge
David Oliva
Groups
PTIVIS21P
Game and Interactive Technologies
Course
5051233
No reservations found for realization 5051233-3004!

Evaluation scale

H-5

Content scheduling

The course starts on XXth October (MORE INFORMATION SOON)
The course is divided in 7 blocks. The blocks and their corresponding goals are:

1.Tools
Learn basics related to the use of Unity to solve Physics in games
Understand connection between UI and hardcore coding

2. Cinematics
Use elemental physics equaltions to model different types of objects motion
Learn verification methods to test the correctness of the solution

3. Collisions
Understand frequent algorithms applied for collisions and avoidance of tunneling effect
Learn about changes of trayectories and velocities using collision principles

4. Sniper
Improve knowledge on projectile trayectories when considering physical effects like air resistance and air drag
Learn to use databases and second order equation fitting to empirical data

5. Acoustics
Learn basics of sound propagation and transmission in open and close spaces
Learn tools for immersive 3D-audio modelling in Unity

6. Fluids
Understand basics about smoke and flames propagation
Learn the use of shaders and other modelling tools for visually appealing representation of flames and smoke

7. Demo
Improve oral and visual presentation skills when pitching your game

Objective

After completing the course the student can
- use discrete time in programming
- use physics theories in programming
- simulate practical and mechanical problems by programming
- construct and implement efficient algorithms of the topics above for game purposes

Content

- Algorithmics with focus on algorithm design and algorithm analysis
- Time in programming
- Kinematics and rotational motion
- Forces causing movement
- Collisions
- Using simulations in programming

Materials

Teacher will provide powerpoints. Theory classess requires students to bring paper and pen to take notes

Teaching methods

Typical teaching in class room
+
Student preparation of own demos

Exam schedules

There are no exams in this course. Evaluation is based on weekly work and final work. See Assessment info.

International connections

Analyze -> think -> work -> solve -> show

Student workload

Between XX November 2023 (Week 45) and XX December 2023 (Week 51)
ATTENTION: Final dates published in ItsLearning. Always check ItsLearning!

Mondays from 9:00 to 12:00 in Auditorium. Class is face to face
Tuesdays. 4 hours own work
Wednesdays: 4 hours own work
Thursdays: from 9:00 to 12:00 in room C3031
Fridays: 4 hours own work

The used hours are approximately 135 which is equivalent to 5 ECTs

Further information

come to the class. Don't be lazy

Go back to top of page