Data Analytics and Machine Learning (5 op)
Toteutuksen tunnus: TT00CO52-3003
Toteutuksen perustiedot
- Ilmoittautumisaika
-
04.12.2024 - 17.01.2025
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
17.01.2025 - 30.04.2025
Toteutus on käynnissä.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Tekniikka ja liiketoiminta
- Toimipiste
- Kupittaan kampus
- Opetuskielet
- englanti
- Paikat
- 0 - 60
- Koulutus
- Degree Programme in Information and Communications Technology
- Tietojenkäsittelyn koulutus
- Tieto- ja viestintätekniikan koulutus
- Opettajat
- Matti Kuikka
- Golnaz Sahebi
- Ajoitusryhmät
- Pienryhmä 1 (Koko: 30 . Avoin AMK : 0.)
- Pienryhmä 2 (Koko: 30 . Avoin AMK : 0.)
- Ryhmät
-
PTIVIS23IData Engineering and Artificial Intelligence
-
PTIETS23deaiData Engineering and Artificial Intelligence
- Pienryhmät
- Pienryhmä 1
- Pienryhmä 2
- Opintojakso
- TT00CO52
Toteutuksella on 35 opetustapahtumaa joiden yhteenlaskettu kesto on 72 t 45 min.
Aika | Aihe | Tila |
---|---|---|
Pe 17.01.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_1002
Moriaberg Esitystila byod
|
Pe 24.01.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_1002
Moriaberg Esitystila byod
|
Pe 24.01.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 24.01.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 31.01.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_1002
Moriaberg Esitystila byod
|
Pe 31.01.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 31.01.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 07.02.2025 klo 14:00 - 16:00 (2 t 0 min) |
CANCELLED !!! Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 14.02.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_C1035_Delta
DELTA
|
Pe 14.02.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 14.02.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 28.02.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_B1026_Gamma
GAMMA
|
Pe 28.02.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 28.02.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 07.03.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_C1035_Delta
DELTA
|
Pe 07.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 07.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 14.03.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_C1035_Delta
DELTA
|
Pe 14.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2003
Erik muunto byod
|
Pe 14.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 21.03.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_C1035_Delta
DELTA
|
Pe 21.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 21.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 28.03.2025 klo 12:15 - 15:00 (2 t 45 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_B1026_Gamma
GAMMA
|
Pe 28.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 28.03.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2003
Erik muunto byod
|
Pe 04.04.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_C1035_Delta
DELTA
|
Pe 04.04.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 04.04.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 11.04.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_1002
Moriaberg Esitystila byod
|
Pe 11.04.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Pe 11.04.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2002
Ivar muunto byod
|
Pe 25.04.2025 klo 12:00 - 14:00 (2 t 0 min) |
Lecture, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_1002
Moriaberg Esitystila byod
|
Pe 25.04.2025 klo 12:00 - 16:00 (4 t 0 min) |
Practice/Group 2, Data Analytics and Machine Learning TT00CO52-3003 |
ICT_C2027
IT telakka
|
Pe 25.04.2025 klo 14:00 - 16:00 (2 t 0 min) |
Practice/Group 1, Data Analytics and Machine Learning TT00CO52-3003 |
EDU_2027
Frans muunto byod
|
Arviointiasteikko
H-5
Sisällön jaksotus
+ The course includes approximately 14 theory sessions and 14 guided practice sessions, 9 personal homework assignments, 8-9 classwork assignment and a teamwork final project
+ Final project is done in groups of 2-3 people outside of guidance sessions. The group sets aside 15 minutes to present the group work during the last session.
+ Content scheduling (Note: this is a preliminary plan and may be adjusted based on class performance.)
- Week 03: Course Introduction (2h)
- Week 04: Landscape of machine learning (3 hours split into separate theory and practice sessions)
- Week 05: Data exploration (3 hours split into separate theory and practice sessions)
- Week 06: Data preparation (3 hours split into separate theory and practice sessions)
- Week 07: Model training, selection, and evaluation (3 hours split into separate theory and practice sessions)
- Week 08: Winter break - Visualization (self-study)
- Week 09: Demonstrations of Exercises 1 – 4 (3h)
- Week 10: Classification (3 hours split into separate theory and practice sessions)
- Week 11: Training models (3 hours split into separate theory and practice sessions)
- Week 12: Decision trees (3 hours split into separate theory and practice sessions)
- Week 13: Unsupervised learning (3 hours split into separate theory and practice sessions)
- Week 14: Guidance to team work (3 hours split into separate theory and practice sessions)
- Week 15: Introduction to Neural networks (3 hours split into separate theory and practice sessions)
- Week 16: Demonstrations of Exercises 5 – 9 (3h)
- Week 17: Team work presentations (3h)
Tavoitteet
After completing the course the student:
- Can define the main concepts related to machine learning
- Understands the value and the drivers for machine learning
- Can describe the processes of machine learning
- Can use some tools for data analytics and machine learning
Sisältö
Machine learning process and methods
Practical work
Oppimateriaalit
Course book:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
3rd Edition.
Publisher : O'Reilly Media;
(2022)
We study chapters 1, 2, 3, 4, 6, 9, and 10 of the book. They have about 300 pages, but some are skipped over.
The course book can be read in electronic form from our institution's eBook Central database.
The course also has reading material, which will be announced during the course.
Opetusmenetelmät
- Participating in lectures (theory and practice)
- Learning through hands-on programming (classwork assignments)
- Completing homework assignments
- Interacting with the teacher and classmates
- Enhancing knowledge through teamwork projects
- Following the flipped-classroom model (pre-session self-study of theoretical concepts followed by in-class practical application)
Tenttien ajankohdat ja uusintamahdollisuudet
+ No exam, retake not possible after the publication of the final assessment/course grade
Kansainvälisyys
- The course includes approximately 28 (1.5 hours) theory and practice sessions, where students engage with practical tasks.
- Homework exercises will be assigned, with some parts demonstrated during contact sessions.
- Classwork assignments will be given during the practice sessions and must be completed and submitted within those hours to earn points.
- A teamwork project will be introduced in the second month, requiring students to apply their teamwork skills and the knowledge gained from the course to implement their final project.
- A flipped-classroom model may be used for some lectures, where students study the theoretical content at home and focus on practical implementation and discussions during class.
Toteutuksen valinnaiset suoritustavat
The practical work and exercises are primarily conducted using Python, including its DA and ML-related libraries, within Jupyter Notebook.
Opiskelijan ajankäyttö ja kuormitus
+ Student Responsibilities:
1. Class Participation and doing the classwork assignments:
- The completion of in-class assignments, which must be submitted during class hours.
2. Homework Assignments:
- Completing approximately 9 individual homework assignments, partially demonstrated during contact sessions. The exact number of the assignments will be announced at the first lecture.
3. Final Project:
- A groupwork project (2-3 students) to be completed over weeks 46 & 47, culminating in a presentation in week 48.
+ Student workload:
Contact hours (approximately):
- One introductionary session: 2h
- 13 times 3h theory and practice: 13 x 3h = 39 hours
- Final projects and presentations: 24 hours
- Home work: approximately 75 hours
Total: approximately: 140 hours
Lisätiedot
+ Qualifications/Prerequisites:
Student enrollment in the course will not be accepted by the instructor if they have not passed the following prerequisite courses:
- Python programming skills and skills in utilizing Pandas for data manipulation and Numpy for numerical operations and array handling
- Basic knowledge of probability, statistics and linear algebra
+ Communication Channel:
Itslearning and email