Deep Learning (5 op)
Toteutuksen tunnus: TT00CN75-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
-
01.06.2024 - 09.09.2024
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
02.09.2024 - 15.12.2024
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Tekniikka ja liiketoiminta
- Toimipiste
- Kupittaan kampus
- Opetuskielet
- englanti
- Paikat
- 10 - 40
- Koulutus
- Tietojenkäsittelyn koulutus
- Opettajat
- Matti Kuikka
- Mojtaba Jafaritadi
- Vastuuopettaja
- Mojtaba Jafaritadi
- Ryhmät
-
PTIETS22deaiPTIETS22 Datatekniikka ja Tekoäly
-
PTIVIS22IData Engineering and AI
- Opintojakso
- TT00CN75
Toteutuksella on 16 opetustapahtumaa joiden yhteenlaskettu kesto on 39 t 0 min.
Aika | Aihe | Tila |
---|---|---|
To 05.09.2024 klo 14:00 - 16:00 (2 t 0 min) |
Start, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 12.09.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
Ke 18.09.2024 klo 11:00 - 12:00 (1 t 0 min) |
Q&A, Deep Learning TT00CN75-3001 |
Online
|
To 19.09.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 26.09.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
Ma 30.09.2024 klo 13:00 - 14:00 (1 t 0 min) |
Q&A, Deep Learning TT00CN75-3001 |
Online
|
To 03.10.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 10.10.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
Ke 23.10.2024 klo 09:00 - 10:00 (1 t 0 min) |
Q&A, Deep Learning TT00CN75-3001 |
Online
|
To 24.10.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 31.10.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
Ma 04.11.2024 klo 13:00 - 14:00 (1 t 0 min) |
Q&A, Deep Learning TT00CN75-3001 |
Online
|
To 07.11.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 14.11.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 21.11.2024 klo 13:00 - 16:00 (3 t 0 min) |
Theory & Practice, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
To 28.11.2024 klo 13:00 - 16:00 (3 t 0 min) |
Final Exam, Deep Learning TT00CN75-3001 |
ICT_C2027
IT telakka
|
Arviointiasteikko
H-5
Sisällön jaksotus
The course will cover the following concepts:
-- Introduction to Deep Learning
-- Tensors and tensor operations
-- Multi layer Perceptron
-- Gradient based Optimization
-- Back-propagation
-- Loss Functions
-- Activation Functions
-- Convolutional Neural Networks
-- Recurrent Neural Networks
-- DNN Architectures
-- Hyperparameter Fine-Tuning
-- Transfer Learning
Practical Aspects of Deep Learning will be also covered during the course and exercise.
Tavoitteet
After completing the course, the student can:
- Can define the main concepts, values and drivers for deep learning
- Can describe how machine learning and AI solutions can be developed with deep learning and neural networks
- Use tools when creating the solutions
Sisältö
Deep Learning
Neural Networks
Natural Language Processing
Pattern Recognition
Computer Vision
Practical work
Oppimateriaalit
Course materials are prepared by the lecturer from various sources including books, online material, etc.
Recommended books to study in this course are:
-- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition by Aurélien Géron, OREILLY, 2021
-- Deep Learning with Python, François Chollet
Tenttien ajankohdat ja uusintamahdollisuudet
Exam will be in the first week of December (at the same date as we have the regular lectures).
Kansainvälisyys
The course includes 12 theory sessions and personal practice tasks.
The lectures cover the main theories, techniques, and algorithms in basics of deep learning, starting with fundamental concepts such as neural networks, optimization and regularization techniques, modelling, and fine tuning. Through the course, there will be more practical applications of deep learning such as CNNs, RNNs, Computer Vision, and NLP.
Toteutuksen valinnaiset suoritustavat
The exercises are mainly performed using Jupyter Notebook. Student will use TensorFlow and/or PyTorch. Strong python programming is need to complete the exercises.
Opiskelijan ajankäyttö ja kuormitus
12 sessions (2.9-29.11.24 ) each 3 hours (1h lecture, 2h practice)+ Exam
Contact hours:
- Course start-up (week 36): 2h
- Weeks 37 - 48: Theory & practice (3h/week): 12 x 3h = 36h
- Week 49: Exam: 2h
- In addition, about 5 support and inquiry hours (biweekly): 5x 1h = 5h
Total contact hours: 45 hours
Independent study and homework: about 90 h