Siirry suoraan sisältöön

Deep Learning (5 op)

Toteutuksen tunnus: TT00CN75-3001

Toteutuksen perustiedot


Ilmoittautumisaika
01.06.2024 - 09.09.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
02.09.2024 - 15.12.2024
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
englanti
Paikat
10 - 40
Koulutus
Tietojenkäsittelyn koulutus
Opettajat
Matti Kuikka
Mojtaba Jafaritadi
Vastuuopettaja
Mojtaba Jafaritadi
Ryhmät
PTIETS22deai
PTIETS22 Datatekniikka ja Tekoäly
PTIVIS22I
Data Engineering and AI
Opintojakso
TT00CN75

Toteutuksella on 16 opetustapahtumaa joiden yhteenlaskettu kesto on 39 t 0 min.

Aika Aihe Tila
To 05.09.2024 klo 14:00 - 16:00
(2 t 0 min)
Start, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 12.09.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
Ke 18.09.2024 klo 11:00 - 12:00
(1 t 0 min)
Q&A, Deep Learning TT00CN75-3001
Online
To 19.09.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 26.09.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
Ma 30.09.2024 klo 13:00 - 14:00
(1 t 0 min)
Q&A, Deep Learning TT00CN75-3001
Online
To 03.10.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 10.10.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
Ke 23.10.2024 klo 09:00 - 10:00
(1 t 0 min)
Q&A, Deep Learning TT00CN75-3001
Online
To 24.10.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 31.10.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
Ma 04.11.2024 klo 13:00 - 14:00
(1 t 0 min)
Q&A, Deep Learning TT00CN75-3001
Online
To 07.11.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 14.11.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 21.11.2024 klo 13:00 - 16:00
(3 t 0 min)
Theory & Practice, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
To 28.11.2024 klo 13:00 - 16:00
(3 t 0 min)
Final Exam, Deep Learning TT00CN75-3001
ICT_C2027 IT telakka
Muutokset varauksiin voivat olla mahdollisia.

Arviointiasteikko

H-5

Sisällön jaksotus

The course will cover the following concepts:
-- Introduction to Deep Learning
-- Tensors and tensor operations
-- Multi layer Perceptron
-- Gradient based Optimization
-- Back-propagation
-- Loss Functions
-- Activation Functions
-- Convolutional Neural Networks
-- Recurrent Neural Networks
-- DNN Architectures
-- Hyperparameter Fine-Tuning
-- Transfer Learning
Practical Aspects of Deep Learning will be also covered during the course and exercise.

Tavoitteet

After completing the course, the student can:
- Can define the main concepts, values and drivers for deep learning
- Can describe how machine learning and AI solutions can be developed with deep learning and neural networks
- Use tools when creating the solutions

Sisältö

Deep Learning
Neural Networks
Natural Language Processing
Pattern Recognition
Computer Vision
Practical work

Oppimateriaalit

Course materials are prepared by the lecturer from various sources including books, online material, etc.

Recommended books to study in this course are:
-- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition by Aurélien Géron, OREILLY, 2021
-- Deep Learning with Python, François Chollet

Tenttien ajankohdat ja uusintamahdollisuudet

Exam will be in the first week of December (at the same date as we have the regular lectures).

Kansainvälisyys

The course includes 12 theory sessions and personal practice tasks.

The lectures cover the main theories, techniques, and algorithms in basics of deep learning, starting with fundamental concepts such as neural networks, optimization and regularization techniques, modelling, and fine tuning. Through the course, there will be more practical applications of deep learning such as CNNs, RNNs, Computer Vision, and NLP.

Toteutuksen valinnaiset suoritustavat

The exercises are mainly performed using Jupyter Notebook. Student will use TensorFlow and/or PyTorch. Strong python programming is need to complete the exercises.

Opiskelijan ajankäyttö ja kuormitus

12 sessions (2.9-29.11.24 ) each 3 hours (1h lecture, 2h practice)+ Exam

Contact hours:
- Course start-up (week 36): 2h
- Weeks 37 - 48: Theory & practice (3h/week): 12 x 3h = 36h
- Week 49: Exam: 2h
- In addition, about 5 support and inquiry hours (biweekly): 5x 1h = 5h

Total contact hours: 45 hours
Independent study and homework: about 90 h

Siirry alkuun