Deep Learning (5 op)
Toteutuksen tunnus: TT00CN75-3001
Toteutuksen perustiedot
Ilmoittautumisaika
01.06.2024 - 09.09.2024
Ajoitus
02.09.2024 - 15.12.2024
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Englanti
Paikat
10 - 40
Koulutus
- Tietojenkäsittelyn koulutus
Opettaja
- Mojtaba Jafaritadi
Vastuuopettaja
Mojtaba Jafaritadi
Ryhmät
-
PTIETS22deaiPTIETS22 Datatekniikka ja Tekoäly
-
PTIVIS22IData Engineering and AI
- 05.09.2024 14:00 - 16:00, Start, Deep Learning TT00CN75-3001
- 12.09.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 18.09.2024 11:00 - 12:00, Q&A, Deep Learning TT00CN75-3001
- 19.09.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 26.09.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 30.09.2024 13:00 - 14:00, Q&A, Deep Learning TT00CN75-3001
- 03.10.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 10.10.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 23.10.2024 09:00 - 10:00, Q&A, Deep Learning TT00CN75-3001
- 24.10.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 31.10.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 04.11.2024 13:00 - 14:00, Q&A, Deep Learning TT00CN75-3001
- 07.11.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 14.11.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 21.11.2024 13:00 - 16:00, Theory & Practice, Deep Learning TT00CN75-3001
- 28.11.2024 13:00 - 16:00, Final Exam, Deep Learning TT00CN75-3001
Tavoitteet
After completing the course, the student can:
- Can define the main concepts, values and drivers for deep learning
- Can describe how machine learning and AI solutions can be developed with deep learning and neural networks
- Use tools when creating the solutions
Sisältö
Deep Learning
Neural Networks
Natural Language Processing
Pattern Recognition
Computer Vision
Practical work
Opiskelijan ajankäyttö ja kuormitus
12 sessions (2.9-29.11.24 ) each 3 hours (1h lecture, 2h practice)+ Exam
Contact hours:
- Course start-up (week 36): 2h
- Weeks 37 - 48: Theory & practice (3h/week): 12 x 3h = 36h
- Week 49: Exam: 2h
- In addition, about 5 support and inquiry hours (biweekly): 5x 1h = 5h
Total contact hours: 45 hours
Independent study and homework: about 90 h
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
After the course, students should understand the main principles of deep learning and steps needed for applying them in real applications. The student especially learns the core concepts of deep neural networks, gradient descent, model evaluation, overfitting, and underfitting and is able to find a suitable balance between these extremes in a given problem at hand.
This course comprises 100 study points including:
-- 24 points (1+1p each contact class: Lecture and Practical Session)
-- 36 points for exercises
-- 40 points for the exam
-Participation and exercise (50% of total to pass): Students must achieve at least 50% of the points to pass the course. Participation is
- Exam (50% of total points to pass): Students must achieve at least 50% of the points (20 points) in order to pass the course.
The course is graded on a scale of 0-5.
Grading will be according to the total points collected by the student during the course as well as the exam.
1: 50% (minimum to pass the course)
2: 60-70%
3: 70-80%
4: 80-90%
5: 90- 100%