Data-analytiikka ja Koneoppiminen (5 op)
Toteutuksen tunnus: 3011633-3007
Toteutuksen perustiedot
- Ilmoittautumisaika
-
01.12.2024 - 31.12.2024
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
13.01.2025 - 01.05.2025
Toteutus on käynnissä.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Tekniikka ja liiketoiminta
- Toimipiste
- Kupittaan kampus
- Opetuskielet
- suomi
- englanti
- Paikat
- 15 - 40
- Koulutus
- Tietojenkäsittelyn koulutus
- Tieto- ja viestintätekniikan koulutus
- Opettajat
- Golnaz Sahebi
- Ryhmät
-
PTIETS23swisOhjelmistojen kehittäminen ja tietojärjestelmät
-
PTIVIS23swisOhjelmistojen kehittäminen ja Tietojärjestelmät
- Opintojakso
- 3011633
Toteutuksella on 14 opetustapahtumaa joiden yhteenlaskettu kesto on 41 t 0 min.
Aika | Aihe | Tila |
---|---|---|
Ke 15.01.2025 klo 13:00 - 15:00 (2 t 0 min) |
Course Introduction - Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_C2027
IT telakka
|
Ke 22.01.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 29.01.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 05.02.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 12.02.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 26.02.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 05.03.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 12.03.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 19.03.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 26.03.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 02.04.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 09.04.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 16.04.2025 klo 12:00 - 15:00 (3 t 0 min) |
Data-analytiikka ja Koneoppiminen 3011633-3007 |
ICT_B1038
IT telakka
|
Ke 23.04.2025 klo 12:00 - 15:00 (3 t 0 min) |
Final Project Presentation Event_ Data-analytiikka ja Koneoppiminen 3011633-3007 |
EDU_2025_2026
Teoriatila avo byod
|
Arviointiasteikko
H-5
Sisällön jaksotus
+ The course includes approximately 14 guided working and theory sessions, 9 personal homework assignments, 8-9 classwork assignment and a teamwork project
+ Final project is done in groups of 2-3 people outside of guidance sessions. The group sets aside 15 minutes to present the group work during the last session.
+ Content scheduling (pre-planning)
week 03: Course Kick-off: Overview of the course objectives, expectations, and structure.
Week 04: Landscape of machine learning
Week 05: Data Wrangling and Visualization using Pandas, Matplotlib, and Seaborn
Week 06: Data exploration (Chapter 2)
Week 07: Data preparation (Chapter 2)
Week 08: Winter break - Visualization (self-study)
Week 09: Model training, selection, and evaluation
Week 10: Demonstrations of Exercises 1 – 4
Week 11: Classification
Week 12: Training models
Week 13: Decision trees
Week 14: Guidance to team work
Week 15: Introduction to Neural networks
Week 16: Demonstrations of Exercises 5 – 9
Week 17: Team work presentations
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Course book:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
3rd Edition.
Publisher : O'Reilly Media;
(2023)
We study chapters 1, 2, 3, 4, 6, 9, and 10 of the book. They have about 300 pages, but some are skipped over.
The course book can be read in electronic form from our institution's eBook Central database.
The course also has reading material, which will be announced during the course.
Opetusmenetelmät
- Participating in lectures (theory and practice)
- Learning through hands-on programming (classwork assignments)
- Completing homework assignments
- Interacting with the teacher and classmates
- Enhancing knowledge through teamwork projects
- Following the flipped-classroom model (pre-session self-study of theoretical concepts followed by in-class practical application)
Tenttien ajankohdat ja uusintamahdollisuudet
+ No exam, retake not possible after the publication of the final assessment/course grade
Kansainvälisyys
- The course includes approximately 14 theory and practice sessions, where students engage with practical tasks.
- Homework exercises will be assigned, with some parts demonstrated during contact sessions.
- A teamwork project will be introduced in the second month, requiring students to apply their teamwork skills and the knowledge gained from the course to implement their final project.
- A flipped-classroom model may be used for some lectures, where students study the theoretical content at home and focus on practical implementation and discussions during class.
Toteutuksen valinnaiset suoritustavat
The practice works and exercises are mainly performed using Python and Jupyter Notebook.
Opiskelijan ajankäyttö ja kuormitus
+ Student Responsibilities:
1. Class Participation and Assignments:
- Active participation in all classes, including the completion of in-class assignments, which must be submitted during class hours.
2. Homework Assignments:
- Completing 8-10 individual homework assignments, partially demonstrated during contact sessions. The exact number of the assignments will be announced at the first lecture)
3. Final Project:
- A group project (2-3 students) to be completed over Weeks 46 & 47, culminating in a presentation in Week 48.
+ Student workload:
Contact hours (approximately):
- One introductionary session: 2h
- 13 times 3h theory and practice: 13 x 3h = 39 hours
- Final projects and presentations: 24 hours
- Home work: approximately 75 hours
Total: approximately: 140 hours
Lisätiedot
+ Qualifications/Prerequisites:
Student enrollment in the course will not be accepted by the instructor if they have not passed the following prerequisite courses:
- Python programming skills and skills in utilizing Pandas for data manipulation and Numpy for numerical operations and array handling
- Basic knowledge of probability, statistics and linear algebra
+ Communication Channel:
Itslearning and email