Siirry suoraan sisältöön

Data-analytiikka ja Koneoppiminen (5 op)

Toteutuksen tunnus: 3011633-3007

Toteutuksen perustiedot


Ilmoittautumisaika
01.12.2024 - 31.12.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
13.01.2025 - 01.05.2025
Toteutus on käynnissä.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
suomi
englanti
Paikat
15 - 40
Koulutus
Tietojenkäsittelyn koulutus
Tieto- ja viestintätekniikan koulutus
Opettajat
Golnaz Sahebi
Ryhmät
PTIETS23swis
Ohjelmistojen kehittäminen ja tietojärjestelmät
PTIVIS23swis
Ohjelmistojen kehittäminen ja Tietojärjestelmät
Opintojakso
3011633

Toteutuksella on 14 opetustapahtumaa joiden yhteenlaskettu kesto on 41 t 0 min.

Aika Aihe Tila
Ke 15.01.2025 klo 13:00 - 15:00
(2 t 0 min)
Course Introduction - Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_C2027 IT telakka
Ke 22.01.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 29.01.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 05.02.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 12.02.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 26.02.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 05.03.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 12.03.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 19.03.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 26.03.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 02.04.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 09.04.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 16.04.2025 klo 12:00 - 15:00
(3 t 0 min)
Data-analytiikka ja Koneoppiminen 3011633-3007
ICT_B1038 IT telakka
Ke 23.04.2025 klo 12:00 - 15:00
(3 t 0 min)
Final Project Presentation Event_ Data-analytiikka ja Koneoppiminen 3011633-3007
EDU_2025_2026 Teoriatila avo byod
Muutokset varauksiin voivat olla mahdollisia.

Arviointiasteikko

H-5

Sisällön jaksotus

+ The course includes approximately 14 guided working and theory sessions, 9 personal homework assignments, 8-9 classwork assignment and a teamwork project

+ Final project is done in groups of 2-3 people outside of guidance sessions. The group sets aside 15 minutes to present the group work during the last session.

+ Content scheduling (pre-planning)
week 03: Course Kick-off: Overview of the course objectives, expectations, and structure. 
Week 04: Landscape of machine learning 
Week 05: Data Wrangling and Visualization using Pandas, Matplotlib, and Seaborn
Week 06: Data exploration (Chapter 2)
Week 07: Data preparation (Chapter 2)
Week 08: Winter break - Visualization (self-study)
Week 09: Model training, selection, and evaluation 
Week 10: Demonstrations of Exercises 1 – 4 
Week 11: Classification
Week 12: Training models
Week 13: Decision trees
Week 14: Guidance to team work
Week 15: Introduction to Neural networks 
Week 16: Demonstrations of Exercises 5 – 9 
Week 17: Team work presentations

Tavoitteet

Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen

Sisältö

Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu

Oppimateriaalit

Course book:

Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
3rd Edition.
Publisher : O'Reilly Media;
(2023)

We study chapters 1, 2, 3, 4, 6, 9, and 10 of the book. They have about 300 pages, but some are skipped over.

The course book can be read in electronic form from our institution's eBook Central database.

The course also has reading material, which will be announced during the course.

Opetusmenetelmät

- Participating in lectures (theory and practice)
- Learning through hands-on programming (classwork assignments)
- Completing homework assignments
- Interacting with the teacher and classmates
- Enhancing knowledge through teamwork projects
- Following the flipped-classroom model (pre-session self-study of theoretical concepts followed by in-class practical application)

Tenttien ajankohdat ja uusintamahdollisuudet

+ No exam, retake not possible after the publication of the final assessment/course grade

Kansainvälisyys

- The course includes approximately 14 theory and practice sessions, where students engage with practical tasks.
- Homework exercises will be assigned, with some parts demonstrated during contact sessions.
- A teamwork project will be introduced in the second month, requiring students to apply their teamwork skills and the knowledge gained from the course to implement their final project.
- A flipped-classroom model may be used for some lectures, where students study the theoretical content at home and focus on practical implementation and discussions during class.

Toteutuksen valinnaiset suoritustavat

The practice works and exercises are mainly performed using Python and Jupyter Notebook.

Opiskelijan ajankäyttö ja kuormitus

+ Student Responsibilities:
1. Class Participation and Assignments:
- Active participation in all classes, including the completion of in-class assignments, which must be submitted during class hours.
2. Homework Assignments:
- Completing 8-10 individual homework assignments, partially demonstrated during contact sessions. The exact number of the assignments will be announced at the first lecture)
3. Final Project:
- A group project (2-3 students) to be completed over Weeks 46 & 47, culminating in a presentation in Week 48.

+ Student workload:
Contact hours (approximately):
- One introductionary session: 2h
- 13 times 3h theory and practice: 13 x 3h = 39 hours
- Final projects and presentations: 24 hours
- Home work: approximately 75 hours

Total: approximately: 140 hours

Lisätiedot

+ Qualifications/Prerequisites:
Student enrollment in the course will not be accepted by the instructor if they have not passed the following prerequisite courses:
- Python programming skills and skills in utilizing Pandas for data manipulation and Numpy for numerical operations and array handling
- Basic knowledge of probability, statistics and linear algebra

+ Communication Channel:
Itslearning and email

Siirry alkuun