Data-analytiikka ja Koneoppiminen (5 op)
Toteutuksen tunnus: 3011633-3007
Toteutuksen perustiedot
Ilmoittautumisaika
01.12.2024 - 31.12.2024
Ajoitus
13.01.2025 - 01.05.2025
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Suomi
- Englanti
Paikat
15 - 40
Koulutus
- Tieto- ja viestintätekniikan koulutus
- Tietojenkäsittelyn koulutus
Opettaja
- Golnaz Sahebi
Ryhmät
-
PTIVIS23WOhjelmistojen kehittäminen ja Tietojärjestelmät
-
PTIETS23swisOhjelmistojen kehittäminen ja tietojärjestelmät
- 15.01.2025 13:00 - 15:00, Course Introduction - Data-analytiikka ja Koneoppiminen 3011633-3007
- 22.01.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 29.01.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 05.02.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 12.02.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 26.02.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 05.03.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 12.03.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 19.03.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 26.03.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 02.04.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 09.04.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
- 16.04.2025 12:00 - 15:00, Data-analytiikka ja Koneoppiminen 3011633-3007
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Course book:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
3rd Edition.
Publisher : O'Reilly Media;
(2022)
We study chapters 1, 2, 3, 4, 6, 9, and 10 of the book. They have about 300 pages, but some are skipped over.
The course book can be read in electronic form from our institution's eBook Central database.
The course also has reading material, which will be announced during the course.
Opetusmenetelmät
- Participating in lectures (theory and practice)
- Learning through hands-on programming (classwork assignments)
- Completing homework assignments
- Interacting with the teacher and classmates
- Enhancing knowledge through teamwork projects
- Following the flipped-classroom model (pre-session self-study of theoretical concepts followed by in-class practical application)
Tenttien ajankohdat ja uusintamahdollisuudet
+ No exam, retake not possible after the publication of the final assessment/course grade
Pedagogiset toimintatavat ja kestävä kehitys
- The course includes approximately 14 theory and practice sessions, where students engage with practical tasks.
- Homework exercises will be assigned, with some parts demonstrated during contact sessions.
- A teamwork project will be introduced in the second month, requiring students to apply their teamwork skills and the knowledge gained from the course to implement their final project.
- A flipped-classroom model may be used for some lectures, where students study the theoretical content at home and focus on practical implementation and discussions during class.
Toteutuksen valinnaiset suoritustavat
The practice works and exercises are mainly performed using Python and Jupyter Notebook.
Opiskelijan ajankäyttö ja kuormitus
+ Student Responsibilities:
1. Class Participation and Assignments:
- Active participation in all classes, including the completion of in-class assignments, which must be submitted during class hours.
2. Homework Assignments:
- Completing 8-10 individual homework assignments, partially demonstrated during contact sessions. The exact number of the assignments will be announced at the first lecture)
3. Final Project:
- A group project (2-3 students) to be completed over Weeks 46 & 47, culminating in a presentation in Week 48.
+ Student workload:
Contact hours (approximately):
- One introductionary session: 2h
- 13 times 3h theory and practice: 13 x 3h = 39 hours
- Final projects and presentations: 24 hours
- Home work: approximately 75 hours
Total: approximately: 140 hours
Sisällön jaksotus
+ The course includes approximately 14 guided working and theory sessions, 9 personal homework assignments, 8-9 classwork assignment and a teamwork project
+ Final project is done in groups of 2-3 people outside of guidance sessions. The group sets aside 15 minutes to present the group work during the last session.
+ Content scheduling
- Week 03: Course Introduction (2h)
- Week 04: Landscape of machine learning (3h)
- Week 05: Data exploration (3h)
- Week 06: Data preparation (3h)
- Week 07: Model training, selection, and evaluation (3h)
- Week 08: Winter break - Visualization (self-study)
- Week 09: Demonstrations of Exercises 1 – 4 (3h)
- Week 10: Classification (3h)
- Week 11: Training models (3h)
- Week 12: Decision trees (3h)
- Week 13: Unsupervised learning (3h)
- Week 14: Guidance to team work (3h)
- Week 15: Introduction to Neural networks (3h)
- Week 16: Demonstrations of Exercises 5 – 9 (3h)
- Week 17: Team work presentations (3h)
Viestintäkanava ja lisätietoja
+ Qualifications/Prerequisites:
Student enrollment in the course will not be accepted by the instructor if they have not passed the following prerequisite courses:
- Python programming skills and skills in utilizing Pandas for data manipulation and Numpy for numerical operations and array handling
- Basic knowledge of probability, statistics and linear algebra
+ Communication Channel:
Itslearning and email
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
1) The course is graded on a scale of 0-5
2) Students can achieve maximum 200 points from this course that contains:
- Participation and classwork assignments: participating on each lecture and submitting the related classwork assignment during the class hours 4p => 9 X 4 = 36 points.
- Homework assignments: each homework assignment has 15 points. There are 9 homework assignments => 9x4 = 135 points.
- Teamwork assignment: 29 points
Hylätty (0)
The student did NOT get at least 50% of the points in teamwork assignment OR did not get at least 50% of the points in the homework assignments OR did not get at least 50% of the points in participation and classwork assignments.
0-99 points --> Fail
Arviointikriteerit, tyydyttävä (1-2)
100-119 points --> 1
120-139 points --> 2
Arviointikriteerit, hyvä (3-4)
140-159 points --> 3
160-179 points --> 4
Arviointikriteerit, kiitettävä (5)
180-200 points --> 5