ThermodynamicsLaajuus (5 cr)
Code: TE00CO05
Credits
5 op
Objective
The aim of the course is to familiarize students with the fundamentals of heat transfer and thermodynamics, thereby creating a basis for their application in the design and calculation of machines, equipment, and processes.
After completing the course, student:
- is familiar with the basic quantities of thermodynamics and can perform related calculations
- understands heat transfer and its effects in substances and structures (heat conduction , thermal expansion, phase changes)
- can calculate the heat quantity in various state changes
- can perform calculations related to the flow of liquids and gases
- knows the ideal gas equation and can apply it in various state change processes
- understands the state changes of ideal gases and the cycles based on them
- can determine the thermal efficiency of a heat engine as well as the coefficients of performance of a heat pump and a refrigeration machine
- can evaluate the energy efficiency of different machines
- is familiar with the Mollier diagram and its use in calculations related to heat transfer processes
- can investigate thermodynamic phenomena using measurement setups
Content
- the main principles of thermodynamics
- pressure, temperature, measurement
- heat conduction
- thermal expansion
- heat capacity
- quantity of heat
- flow equation, Bernoulli's equation, viscosity of liquids
- changes in the state of gases and vapors
- energy balance, thermal efficiency
- operating principles of thermodynamic machines and cycles
- moist air and Mollier diagram
- measurements related to thermodynamics and reporting of results
Enrollment
01.12.2024 - 25.02.2025
Timing
24.02.2025 - 11.05.2025
Number of ECTS credits allocated
5 op
Virtual portion
4 op
Mode of delivery
20 % Contact teaching, 80 % Distance learning
Unit
Engineering and Business
Campus
Kupittaa Campus
Teaching languages
- Finnish
Seats
60 - 100
Degree programmes
- Degree Programme in Energy and Environmental Technology
Teachers
- COS Opettaja
- Hannele Kuusisto
Scheduling groups
- Pienryhmä A1 (Size: 0. Open UAS: 0.)
- Pienryhmä A2 (Size: 0. Open UAS: 0.)
- Pienryhmä B1 (Size: 0. Open UAS: 0.)
- Pienryhmä B2 (Size: 0. Open UAS: 0.)
Groups
-
PEYTES24APEYTES24A
-
PEYTES24BPEYTES24B
Small groups
- Subgroup A1
- Subgroup A2
- Subgroup B1
- Subgroup B2
Objective
The aim of the course is to familiarize students with the fundamentals of heat transfer and thermodynamics, thereby creating a basis for their application in the design and calculation of machines, equipment, and processes.
After completing the course, student:
- is familiar with the basic quantities of thermodynamics and can perform related calculations
- understands heat transfer and its effects in substances and structures (heat conduction , thermal expansion, phase changes)
- can calculate the heat quantity in various state changes
- can perform calculations related to the flow of liquids and gases
- knows the ideal gas equation and can apply it in various state change processes
- understands the state changes of ideal gases and the cycles based on them
- can determine the thermal efficiency of a heat engine as well as the coefficients of performance of a heat pump and a refrigeration machine
- can evaluate the energy efficiency of different machines
- is familiar with the Mollier diagram and its use in calculations related to heat transfer processes
- can investigate thermodynamic phenomena using measurement setups
Content
- the main principles of thermodynamics
- pressure, temperature, measurement
- heat conduction
- thermal expansion
- heat capacity
- quantity of heat
- flow equation, Bernoulli's equation, viscosity of liquids
- changes in the state of gases and vapors
- energy balance, thermal efficiency
- operating principles of thermodynamic machines and cycles
- moist air and Mollier diagram
- measurements related to thermodynamics and reporting of results
Materials
Insinöörin FYSIIKKA(AMK), Osa I (Hautala, Peltonen)
Verkko-oppimisympäristössä oleva ja sinne linkitetty materiaali
Teaching methods
Osallistava oppiminen, käänteinen oppiminen
Exam schedules
Alustavasti välikokeet viikoilla 14 ja 18 tai vaihtoehtoisesti kurssitentti viikolla 18.
Uusintamahdollisuudet EY-tekniikan yleisissä uusintakokeissa toukokuun, kesäkuun ja syyskuun 2025 uusinnoissa.
International connections
Opiskelijan omaan aktiivisuuteen, kokemukseen ja tiedon rakentamiseen perustuvat menetelmät, Learning-by-doing ja flipped learning
Opintojaksolla hankitut matemaattiset ja luonnontieteelliset taidot tukevat opiskelijoita kestävän, eettisen ja vastuullisen toiminnan toteuttamisessa, sekä työelämässä että yksityiselämässä. Osa opintojakson tehtävistä sisältää kestävään kehitykseen liittyvää laskentaa.
Opintojakson materiaali on pääsääntöisesti digitaalisesti tuotettua materiaalia, joka ei kuluta luonnonvaroja yhtä paljon kuin fyysinen materiaali.
Completion alternatives
Osaamisen näyttö teoriakokeella ja labroja korvaava harjoitustyö
Student workload
Opiskelijan työmäärä 135t jakautuu seuraavasti
- Teoriatunnit ja laskuharjoitukset 38t
- Labratyöt 6t
- Koe 2-4t (riippuen siitä tekeekö kaksi välikoetta vai yhden kurssitentin)
- Itsenäinen opiskelu ja labratöiden raportointi 87-89t (tarkoittaa itsenäistä opiskelua noin 8t/viikko)
Content scheduling
Opintojaksolla tutustutaan termodynamiikan ilmiöihin sekä harjoitellaan niihin liittyviä laskuja ja mittauksia fysiikan näkökulmasta.
Opintojakso toteutuu viikoilla 9-18, lisäksi kokeen palautustunti viikolla 19.
Opintojakson viikkoaikataulu on pääsääntöisesti seuraava:
- perjantaisin uuden aiheen aloitus (etäluento Teams)
- tiistaisin lähilaskupaja viikon tehtäviin liittyen (lähitunti kampuksella)
- torstaisin tukitunti, jossa käydään ko. viikon tehtävien ratkaisuja läpi ennen uuden aiheen aloitusta perjantaina (samanaikainen hybridi; osallistuminen mahdollista etänä/kampuksella)
Teoriatuntien lisäksi opintojakso sisältää kolme pakollista lähilabratyötä, jotka toteutetaan kolmena keskiviikkona (viikoilla 11, 13 ja 16) pienryhmissä. Labratöiden alustavat aiheet: Termistorin resistanssin lämpötilariippuvuus, kalorimetria ja ideaalikaasulait. Yhden labratyön voi halutessaan korvata MATLAB Simulink-ohjelmistolla tehtävällä etälabratyöllä termistorin resistanssin lämpötilariippuvuudesta.
Sisältö
- Termofysiikan/termodynamiikan perussuureet, kaavat, yksiköt, paine, noste
- Termodynaaminen systeemi, lämpötila ja lämpölaajeneminen
- Lämpökapasiteetti, lämpöenergia ja energian siirtyminen
- Olomuodon muutokset ja energia olomuodon muutoksissa
- Nesteiden ja kaasujen virtaukset, virtausyhtälöt
- Nesteen viskositeetti
- Ideaalikaasun tilanyhtälö
- Termodynamiikan I ja II pääsääntö
- Kaasujen kiertoprosessit
- Lämpö- ja kylmäkoneiden toimintaperiaate
- Kostean ilman fysiikan perusteet ja Mollier-käyrästö
Further information
Opintojakson tärkeimmät ilmoitukset lähetetään sähköpostitse. Opiskelijoiden toivotaan olevan yhteydessä opettajaan ensisijaisesti sähköpostitse. Myös tuntien yhteydessä voi avoimesti kysyä ja keskustella asioista.
Ajankohtaisista asioista ilmoitetaan its-kurssin Yleiskatsaus-sivulla.
Opiskelussa käytettävät oppimisympäristöt ja ohjelmistot: Itslearning, ViLLE, MS Excel, MS Word (+MATLAB)
Evaluation scale
H-5
Assessment methods and criteria
Opintojakso arvioidaan numeerisesti asteikolla 0-5 kokeen/kokeiden perusteella (max 100p). Jos opiskelija suorittaa kurssin välikokeilla, kumpaankin kokeeseen on osallistuttava. Jos toisen välikokeen suoritus jää uupumaan, suoritetaan kurssi tentillä joko varsinaisena tenttipäivänä tai uusinnassa.
Itsenäisesti suoritettavilla ViLLE-laskuharjoituksilla on mahdollista saada kerätä max 12p (vastaa numeron korotusta kokeen arvosanaan). Labrojen ennakkotehtävillä on mahdollista kerätä max 6p (vastaa puolen numeron korotusta kokeen arvosanaan).
Kurssiin kuuluvat kolme labratyötä on myös kaikki suoritettava hyväksytysti (aktiivinen työskentely labrassa ja hyväksytysti täytetty mittauspöytäkirja).
Assessment criteria, fail (0)
Opiskelija ei saavuta vähintään 40 % kurssipisteistä = 40p tai opiskelija ei ole suorittanut pakollisia labratöitä hyväksytysti.
Assessment criteria, satisfactory (1-2)
Arvosanaan 1 vaaditaan noin 40 % kurssipisteistä = 40p ja hyväksytysti suoritetut labratyöt (3 kpl)
Arvosanaan 2 vaaditaan noin 52 % kurssipisteistä = 52p ja hyväksytysti suoritetut labratyöt (3 kpl)
Arvosanan 1-2 tasoinen osaaminen tarkoittaa termodynamiikan perusilmiöiden tuntemusta ja termodynamiikan perussuureisiin liittyvien laskujen hallintaa.
Assessment criteria, good (3-4)
Arvosanaan 3 vaaditaan noin 64 % kurssipisteistä = 64p ja hyväksytysti suoritetut labratyöt (3 kpl)
Arvosanaan 4 vaaditaan noin 76 % kurssipisteistä = 76p ja hyväksytysti suoritetut labratyöt (3 kpl)
Arvosanan 3-4 tasoinen osaaminen tarkoittaa edellisen tason osaamisen lisäksi ymmärrystä kaasun prosesseista ja termodynamiikan pääsäännöistä sekä näihin aiheisiin liittyvien laskukaavojen soveltamisen osaamista erilaisissa tilanteissa.
Assessment criteria, excellent (5)
Arvosanaan 5 vaaditaan noin 88 % kurssipisteistä = 88 p ja hyväksytysti suoritetut labratyöt (3 kpl)
Arvosanan 5 tasoinen osaaminen tarkoittaa edellisten tasojen osaamisen lisäksi virtauksiin liittyvää laskuosaamista, erityisesti Bernoullin yhtälön soveltamista erilaisissa tilanteissa ja/tai lämpö- ja kylmäkoneiden toimintaperiaatteen ja kiertoprosessien tuntemusta.
Enrollment
30.05.2024 - 15.09.2024
Timing
02.09.2024 - 18.12.2024
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Engineering and Business
Campus
Kupittaa Campus
Teaching languages
- English
Seats
0 - 20
Degree programmes
- Degree Programme in Energy and Environmental Engineering
Teachers
- COS Opettaja
- Aaro Mustonen
Groups
-
PENERS23Energy and Environmental Engineering, S23
Objective
The aim of the course is to familiarize students with the fundamentals of heat transfer and thermodynamics, thereby creating a basis for their application in the design and calculation of machines, equipment, and processes.
After completing the course, student:
- is familiar with the basic quantities of thermodynamics and can perform related calculations
- understands heat transfer and its effects in substances and structures (heat conduction , thermal expansion, phase changes)
- can calculate the heat quantity in various state changes
- can perform calculations related to the flow of liquids and gases
- knows the ideal gas equation and can apply it in various state change processes
- understands the state changes of ideal gases and the cycles based on them
- can determine the thermal efficiency of a heat engine as well as the coefficients of performance of a heat pump and a refrigeration machine
- can evaluate the energy efficiency of different machines
- is familiar with the Mollier diagram and its use in calculations related to heat transfer processes
- can investigate thermodynamic phenomena using measurement setups
Content
- the main principles of thermodynamics
- pressure, temperature, measurement
- heat conduction
- thermal expansion
- heat capacity
- quantity of heat
- flow equation, Bernoulli's equation, viscosity of liquids
- changes in the state of gases and vapors
- energy balance, thermal efficiency
- operating principles of thermodynamic machines and cycles
- moist air and Mollier diagram
- measurements related to thermodynamics and reporting of results
Materials
College Physics 2e, Thermodynamics (https://openstax.org/books/college-physics-2e/pages/15-introduction-to-thermodynamics)
Material in and linked to the online learning environment
Teaching methods
Participatory learning, flipped learning
Exam schedules
The dates of the 2 midterm exams will be announced at the start of the course.
Retake opportunities in the general retake exams of Energy and environmental technologies degrees in the December and January retakes.
International connections
Methods based on the student's own activity, experience and knowledge building.
Completion alternatives
Demonstration of competence with a theory test. This option must be agreed with the teacher. If you have studied a course of a similar level and content, it is possible to read the course well. Ask the teacher for instructions on this.
Student workload
The student's workload of 135h is distributed as follows
- Theory lessons and calculation exercises 36h
- Familiarization with laboratory work and working in the laboratory 6 hours
- Exam 2-4h (depending on whether you take two midterm exams or one course exam)
- Independent study 89-91h
Content scheduling
The course takes place on Tuesdays and Fridays in weeks 36-50.
In the course, you get to know the phenomena of thermodynamics and practice related calculations and measurements from a physics perspective. Friday's classes are theory classes on the topic of the week. At the same time, things that remained unclear in the previous week's calculations are repeated. On Tuesdays, there is a calculation workshop (1h).
In addition to the theory lessons, the course includes two mandatory lab works, which are carried out in two different weeks (weeks 40 and 48) in small groups. Initial topics for lab work: Temperature dependence of the thermistor resistance, thermal conductivity and/or calorimetry.
Contents
- Basic quantities of thermophysics/thermodynamics, formulas, units, pressure, lift
- Thermodynamic system, temperature and thermal expansion
- Heat capacity, thermal energy and energy transfer
- Changes in state and energy in state changes
- Flows of liquids and gases, flow equations
- Liquid viscosity
- Equation of state of an ideal gas
- I and II law of thermodynamics
- Gas circulation processes
- Operating principle of heating and cooling machines
- Basics of moist air physics and the Mollier curve
Further information
The most important announcements of the course are sent by e-mail. Students are expected to communicate with the teacher primarily by e-mail. You can also openly ask questions and discuss things during the lessons.
Current affairs are announced on the overview page of the itslearning course.
A function calculator is required for the course.
Evaluation scale
H-5
Assessment methods and criteria
The course is evaluated numerically on a scale of 0-5 based on the exam(s) (max 100p). If the student completes the course with midterm exams, he must participate in both exams. If the performance of the second midterm exam is exhausted, the course will be completed with an exam either on the actual exam day or in a retake.
The course is subject to attendance, regarding theory lessons, counting lessons and laboratory meetings.
With ViLLE calculation exercises that can be performed independently, it is possible to collect a maximum of 12p (equivalent to increasing the number to the exam grade).
The two laboratory works included in the course must also all be completed with approval (active work in the laboratory and an approved measurement protocol). 4p points from pretasks.
Assessment criteria, fail (0)
The student does not achieve at least 40% of the course points = 40p or the student has not successfully completed the mandatory laboratory work.
Assessment criteria, satisfactory (1-2)
A grade of 1 requires about 40% of the course points = 40p and approved lab work (2 labs)
For a grade of 2, approximately 52% of the course points = 52p and approved lab work (2 labs) are required
Competence at grade 1-2 means knowledge of the basic phenomena of thermodynamics and control of calculations related to the basic quantities of thermodynamics.
Assessment criteria, good (3-4)
A grade of 3 requires approximately 64% of the course points = 64p and approved laboratory work (2 labs)
For a grade of 4, approximately 76% of the course points = 76p and successfully completed lab work (2 labs) are required
Competence at grade 3-4 means, in addition to competence at the previous level, an understanding of gas processes and the main rules of thermodynamics, as well as the ability to apply calculation formulas related to these topics in various situations.
Assessment criteria, excellent (5)
For a grade of 5, approximately 88% of the course points = 88 p and approved lab work (3 pieces) are required
Competence at level 5 means, in addition to the competence of the previous levels, calculation competence related to flows, especially the application of Bernoulli's equation in different situations and/or knowledge of the operating principle and circulation processes of heating and cooling machines.
Enrollment
01.12.2023 - 09.02.2024
Timing
13.02.2024 - 30.04.2024
Number of ECTS credits allocated
5 op
Virtual portion
4 op
Mode of delivery
20 % Contact teaching, 80 % Distance learning
Unit
Engineering and Business
Campus
Kupittaa Campus
Teaching languages
- Finnish
Seats
80 - 90
Degree programmes
- Degree Programme in Energy and Environmental Technology
Teachers
- Hannele Kuusisto
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
- Pienryhmä 3 (Size: 0. Open UAS: 0.)
- Pienryhmä 4 (Size: 0. Open UAS: 0.)
Groups
-
PEYTES23
-
PEYTES23A
-
PEYTES23B
Small groups
- 1
- 2
- 3
- 4
Objective
The aim of the course is to familiarize students with the fundamentals of heat transfer and thermodynamics, thereby creating a basis for their application in the design and calculation of machines, equipment, and processes.
After completing the course, student:
- is familiar with the basic quantities of thermodynamics and can perform related calculations
- understands heat transfer and its effects in substances and structures (heat conduction , thermal expansion, phase changes)
- can calculate the heat quantity in various state changes
- can perform calculations related to the flow of liquids and gases
- knows the ideal gas equation and can apply it in various state change processes
- understands the state changes of ideal gases and the cycles based on them
- can determine the thermal efficiency of a heat engine as well as the coefficients of performance of a heat pump and a refrigeration machine
- can evaluate the energy efficiency of different machines
- is familiar with the Mollier diagram and its use in calculations related to heat transfer processes
- can investigate thermodynamic phenomena using measurement setups
Content
- the main principles of thermodynamics
- pressure, temperature, measurement
- heat conduction
- thermal expansion
- heat capacity
- quantity of heat
- flow equation, Bernoulli's equation, viscosity of liquids
- changes in the state of gases and vapors
- energy balance, thermal efficiency
- operating principles of thermodynamic machines and cycles
- moist air and Mollier diagram
- measurements related to thermodynamics and reporting of results
Evaluation scale
H-5