Biotechnology and Chemical Engineering: Biotechnology
Code: PBIOKES23
Descriptions
Objective
Chemical engineers are to graduate furnished with co-operative skills and innovative capability. The engineering student’s more precise field of expertise is determined by the student’s individual choices and may comprise one of the following or a combination thereof: biotechnology, food technology, analytical instrumentation, materials engineering, or process technology. The graduating engineer’s skills set is based on bioscience, physics, chemistry, and mathematics. The student’s competence in matters related to quality and safety is developed from the very beginning of studies. In addition, the student understands the significance of circular economy and entrepreneurship.
Structure and content
The extent of a Bachelor of Engineering degree is 240 ECTS credits, of which 190 cr consists of core competence studies (basic studies, professional studies and practical training 30 cr). The students expand on their core competence by selecting optional studies which best support the desired competence, and by conducting a final thesis project which is relevant for said competence.
The studies are arranged into modules with different themes each year. As a general rule, the extent of the modules is 15 cr. Within the basic studies block, the modules are subject-based to ensure a solid theoretical basis for future engineering studies.
The different years of study are themed as follows:
During their first year, the students acquire the skills set needed for university studies and learning, as well as a solid competence basis in science. The basic engineering subjects are studied, i.e. chemistry, mathematics, and physics. Language and communication studies are started, and studies providing work life competence and entrepreneurial skills are embarked upon. The objective during the first year is to achieve such basic mastery of sciences that can be exploited by the students to solve practical problems during the later phases of study. In addition, first-year students learn to contribute actively as group members and take in the basic principles of project management during practical projects.
During their second year of study, the students apply their science knowledge within their professional engineering studies, thereby constructing a technological competence basis. The professional studies comprise, among others, biotechnological processes and methods, chemical engineering, microbiology, the processes and hygienic requirements of food production, chemical analyses, and processing of materials. Practical laboratory and project working skills constitute an essential part of the desired competence. Working life skills are developed in conjunction with the studies. During their second year, the students select their first optional studies.
During their third and fourth year of study, the students deepen their mastery within the selected specific area of study. Networking skills are enhanced by taking part in an extensive, multidisciplinary, working life based project (innovation project). The third year encompasses the so called International Semester in which even exchange students participate and which for that reason is conducted entirely in English.
The professional and advanced studies consist of the following:
• Chemical engineering and methods for processing and analysing materials
• Project management skills
• Advanced studies; two modules of choice. These may be related to biotechnology, food technology, materials engineering and/or analytical instrumentation. The specific themes of the advanced modules vary according to what is topical within the research groups.
The average annual extent of studies is 60 credits. Students who wish to complete more studies during the academic year may do so e.g. by selecting summer courses, carrying out more practical training than indicated in the curriculum, by participating in research projects, or by applying recognition of learning at work procedures.
Specialisations
The students may specialise in biotechnology, food technology, chemical engineering, or materials technology. Even combinations of these are possible.
The choice of advanced module is conducive to the choice of specialisation. The options vary annually because the advanced modules on offer are dependent on ongoing working life based projects. This ensures the flexibility and up-to-datedness of the studies.
Objective
Learning objectives
The learning objectives of the degree are a combination of objectives in accordance with the set of innovation competences as identified at TUAS, and objectives emerging from the substance studies.
The competences produced by a degree in Chemical and Materials Engineering:
Applied science competence
• possesses essential field-specific skills and knowledge in mathematics, physics and information technology
• possesses essential field-specific skills in chemistry, materials chemistry, biochemistry and microbiology
• capable of applying said skills into practice
Process competence
• masters biotechnological processes and knows the special requirements of processed materials
• has a grasp of the basics and processes of food production
• understands production systems as entities
• process hygiene
• knows the basics of processing and testing materials
Project competence
• can use project management tools
• capable of project-form work according to schedule
• familiar with the management of financial matters related to projects
Communication skills
• makes use of data networks and information and communications technology
• has good group working skills
• has a good grasp of reporting and communication in general
Quality competence
• identifies and can control the risks related to quality, hygiene, and the environment in the context of production processes
• knows the principles of lean operation
Business competence
• knows the specific characteristics of the field from an industrial engineering point of view
• strives for market-oriented, sustainable operation
• understands the business significance of circular economy
Development
Pedagogical methods
The Chemical and Materials Engineering programme is built in compliance with the CDIO framework designed for engineering education. The CDIO framework aims to ensure that graduates possess the basic knowledge and skills base as well as the co-operation skills required of engineers. The CDIO framework supports the implementation of innovation pedagogy. Essentially, during their studies the students work in projects where they themselves conceive, design, implement and operate products or outcomes. The learning environments are designed to enable all of this.
The students’ project management and teamwork skills are honed in accordance with innovation pedagogy and the CDIO framework during the entire duration of the studies. The first year sets off with the study unit Project Management, which initiates the students to the principles of project-form work. During their second year, the students tackle the study unit Chemical Engineering Project, meaning that they work on a topic provided by one of the research groups, applying skills and knowledge acquired during the year. The third year includes the multidisciplinary Innovation Project which is based on an external commission. Students from different disciplines form groups where they contribute with their different skills sets to create synergy and to learn to work in a multidisciplinary team already as students.
The standard duration of the studies is four years. Good planning may allow graduation within a shorter time. Means to this end include, for example, summer studies which are offered by all Finnish universities of applied sciences on a common platform. Even program-specific studies are available. Recognition of learning at work procedures are another way of speeding up studies.
The learning environment has been arranged to support innovation pedagogy and CDIO-based study. The classrooms are mainly furnished for group working, and the students may also independently book rooms for group working. The laboratory setting also has premises for project-form working.
Further information
Assessment
Varied assessment methods are applied in the Chemical Engineering programme. Assessment may be a joint operation performed by different teachers together because a significant part of the studies is arranged as team teaching. Mainly, the different study units are graded on a scale from 1 to 5. Exceptions include the various practical training periods where the grade is either a pass or a fail.
Assessment procedures seek to match the learning objectives for each study unit. The assessment methods selected vary according to the implementation methods. Some examples are provided below:
• The students collect points from tasks designed to generate learning in compliance with the learning objectives. The total points count determines the final grade for the study unit. The assessment system is presented to the students at the start of the study unit so that they can set their own learning objectives for the unit.
• Individual guidance and feedback is provided e.g. in the context of laboratory experiments.
• In project assessment, innovation competences and both self- and peer evaluation are exploited. Intermediate feedback in the form of peer evaluation allows students to improve their performance while the project is still ongoing.
Select timing, structure or classification view
Show study timings by semester, study year or period
Code | Name | Credits (cr) | 2023-2024 | 2024-2025 | 2025-2026 | 2026-2027 |
---|---|---|---|---|---|---|
CORE COMPETENCE
(Choose ects: 190) |
190 | |||||
PBIOKES23-1001 |
Working life skills 1
(Choose all) |
10 | 10 | |||
5000BH71 | Project Hatchery | 5 | 5 | |||
5021182 | Working English | 2 | 2 | |||
TE00BS44 | Software Tools for Professionals | 3 | 3 | |||
PBIOKES23-1002 |
Introduction to chemical engineering
(Choose all) |
15 | 15 | |||
TE00BN29 | Chemistry 1 | 5 | 5 | |||
TE00BL95 | Introduction to Chemical Engineering | 5 | 5 | |||
TE00BX85 | Basics of engineering mathematics | 5 | 5 | |||
PBIOKES23-1003 |
Natural sciences and mathematics
(Choose all) |
20 | 20 | |||
5021100 | Microbiology | 5 | 5 | |||
5021146 | Chemistry 2 | 5 | 5 | |||
5021211 | Engineering Physics | 5 | 5 | |||
TE00BX84 | Calculus | 5 | 5 | |||
PBIOKES23-1004 |
Working life skills 2
(Choose all) |
10 | 10 | |||
TE00BY04 | Workplace Communication | 2 | 2 | |||
100114 | Swedish for Working Life, Oral Communication (replacing compulsory Swedish) | 1 | 1 | |||
100115 | Swedish for Working Life, Written Communication (replacing compulsory Swedish) | 2 | 2 | |||
5021213 | Working Life Skills | 5 | 5 | |||
PBIOKES23-1005 |
Natural sciences 1
(Choose all) |
15 | 15 | |||
TE00BN83 | Biochemistry | 5 | 5 | |||
5021198 | Chemical Working Methods | 5 | 5 | |||
TE00BL99 | Organic and Physical Chemistry | 5 | 5 | |||
PBIOKES23-1006 |
Processes 1
(Choose all) |
5 | 5 | |||
TE00BL98 | Basics of Chemical Engineering | 5 | 5 | |||
PBIOKES23-1007 |
Natural sciences 2
(Choose all) |
15 | 15 | |||
5021196 | Analytical Methods | 5 | 5 | |||
TE00BL96 | Analytical Methods 2 | 5 | 5 | |||
5021212 | Measurements in Physics | 5 | 5 | |||
PBIOKES23-1008 |
Processes 2
(Choose all) |
15 | 15 | |||
TE00BN28 | Processes in Chemical Industry | 5 | 5 | |||
TE00BL97 | Design and Implement Project | 5 | 5 | |||
TE00BX88 | English Professional Skills | 3 | 3 | |||
TE00BS45 | Software Tools for Professionals 2 | 2 | 2 | |||
PBIOKES23-1009 |
Engineering Tools
(Choose all) |
10 | 10 | |||
5021164 | Electrical and Automation Engineering | 5 | 5 | |||
TE00BT92 | Process Control Engineering | 2 | 2 | |||
TE00BT93 | Quality and Metrology | 3 | 3 | |||
PBIOKES23-1010 |
Entrepreneurship
(Choose all) |
15 | 15 | |||
5021128 | Business Operations | 5 | 5 | |||
TE00BL66 | Innovation Project | 10 | 10 | |||
Specialisation Studies
(Choose ects: 30) |
30 | |||||
PBIOKES23-1015 |
Biomaterials and Bioprocesses 1
(Choose all) |
15 | 15 | |||
5021169 | Basics of genetic engineering and diagnostics | 5 | 5 | |||
5021220 | Biotechnological processes and downstream processing | 5 | 5 | |||
5021168 | Biomaterials and tissue engineering | 5 | 5 | |||
PBIOKES23-1016 |
Biomaterials and bioprocesses 2
(Choose all) |
15 | 15 | |||
5021221 | Biomaterials manufacturing processes | 5 | 5 | |||
5021222 | Biotechnological production | 5 | 5 | |||
5021167 | Methods in biotechnology | 5 | 5 | |||
PBIOKES23-1017 |
PRACTICAL TRAINING
(Choose all) |
30 | 10 | 10 | 10 | |
TE00BL93 | Basic Practice 1 | 10 | 10 | |||
TE00BN11 | Field-Specific Practice 1 | 10 | 10 | |||
TE00BN12 | Professional Practice | 10 | 10 | |||
COMPLEMENTARY COMPETENCE
(Choose ects: 50) |
50 | |||||
PBIOKES23-1018 |
OPTIONAL STUDIES
(Choose ects: 30) |
30 | ||||
TE00BL92 | Introduction to Chemistry | 3 | 3 | |||
TE00BL94 | CAD | 5 | ||||
TE00BV70 | Introduction to Mathematical Sciences | 5 | 5 | |||
TE00BS59 | Basics of Quality and Standards | 5 | ||||
TE00CK42 | Brewing Technology and Working in Brewery Environment | 1 - 10 | ||||
PBIOKES23-1019 |
Bachelor's Thesis
(Choose all) |
20 | 20 | |||
5021150 | Thesis, Methodology | 5 | 5 | |||
5021151 | Thesis, implementation | 10 | 10 | |||
5021152 | Thesis, Reporting and Maturity Test | 5 | 5 | |||
Total | 240 | 73 | 60 | 65 | 20 |
Due to the timing of optional and elective courses, credit accumulation per semester / academic year may vary.
Code | Name | Credits (cr) |
---|---|---|
CORE COMPETENCE
(Choose ects: 190) |
190 | |
PBIOKES23-1001 |
Working life skills 1
(Choose all) |
10 |
5000BH71 | Project Hatchery | 5 |
5021182 | Working English | 2 |
TE00BS44 | Software Tools for Professionals | 3 |
PBIOKES23-1002 |
Introduction to chemical engineering
(Choose all) |
15 |
TE00BN29 | Chemistry 1 | 5 |
TE00BL95 | Introduction to Chemical Engineering | 5 |
TE00BX85 | Basics of engineering mathematics | 5 |
PBIOKES23-1003 |
Natural sciences and mathematics
(Choose all) |
20 |
5021100 | Microbiology | 5 |
5021146 | Chemistry 2 | 5 |
5021211 | Engineering Physics | 5 |
TE00BX84 | Calculus | 5 |
PBIOKES23-1004 |
Working life skills 2
(Choose all) |
10 |
TE00BY04 | Workplace Communication | 2 |
100114 | Swedish for Working Life, Oral Communication (replacing compulsory Swedish) | 1 |
100115 | Swedish for Working Life, Written Communication (replacing compulsory Swedish) | 2 |
5021213 | Working Life Skills | 5 |
PBIOKES23-1005 |
Natural sciences 1
(Choose all) |
15 |
TE00BN83 | Biochemistry | 5 |
5021198 | Chemical Working Methods | 5 |
TE00BL99 | Organic and Physical Chemistry | 5 |
PBIOKES23-1006 |
Processes 1
(Choose all) |
5 |
TE00BL98 | Basics of Chemical Engineering | 5 |
PBIOKES23-1007 |
Natural sciences 2
(Choose all) |
15 |
5021196 | Analytical Methods | 5 |
TE00BL96 | Analytical Methods 2 | 5 |
5021212 | Measurements in Physics | 5 |
PBIOKES23-1008 |
Processes 2
(Choose all) |
15 |
TE00BN28 | Processes in Chemical Industry | 5 |
TE00BL97 | Design and Implement Project | 5 |
TE00BX88 | English Professional Skills | 3 |
TE00BS45 | Software Tools for Professionals 2 | 2 |
PBIOKES23-1009 |
Engineering Tools
(Choose all) |
10 |
5021164 | Electrical and Automation Engineering | 5 |
TE00BT92 | Process Control Engineering | 2 |
TE00BT93 | Quality and Metrology | 3 |
PBIOKES23-1010 |
Entrepreneurship
(Choose all) |
15 |
5021128 | Business Operations | 5 |
TE00BL66 | Innovation Project | 10 |
Specialisation Studies
(Choose ects: 30) |
30 | |
PBIOKES23-1011 |
Materials technology 1
(Choose all) |
15 |
5021223 | Basics of Materials Technology | 5 |
5021224 | Processing Technologies | 5 |
5021225 | Selection of Materials | 5 |
PBIOKES23-1012 |
Material technology 2
(Choose all) |
15 |
TE00BX98 | Processing of Plastics | 5 |
TE00BX99 | Packaging Technology | 5 |
TE00BY00 | Project | 5 |
PBIOKES23-1013 |
Food Engineering 1
(Choose all) |
15 |
TE00BV66 | Food ingredients and raw materials | 5 |
TE00BV68 | Product Development and Analytics | 5 |
TE00BX89 | Food Processes | 3 |
TE00BX90 | Sensory Analysis | 2 |
PBIOKES23-1014 |
Food Engineering 2
(Choose all) |
15 |
TE00BY03 | Food Processes 2 | 5 |
TE00BX91 | Food Legislation and Food Hygiene and Safety | 5 |
TE00BR60 | Food Project | 5 |
PBIOKES23-1015 |
Biomaterials and Bioprocesses 1
(Choose all) |
15 |
5021169 | Basics of genetic engineering and diagnostics | 5 |
5021220 | Biotechnological processes and downstream processing | 5 |
5021168 | Biomaterials and tissue engineering | 5 |
PBIOKES23-1016 |
Biomaterials and bioprocesses 2
(Choose all) |
15 |
5021221 | Biomaterials manufacturing processes | 5 |
5021222 | Biotechnological production | 5 |
5021167 | Methods in biotechnology | 5 |
PBIOKES23-1017 |
PRACTICAL TRAINING
(Choose all) |
30 |
TE00BL93 | Basic Practice 1 | 10 |
TE00BN11 | Field-Specific Practice 1 | 10 |
TE00BN12 | Professional Practice | 10 |
COMPLEMENTARY COMPETENCE
(Choose ects: 50) |
50 | |
PBIOKES23-1018 |
OPTIONAL STUDIES
(Choose ects: 30) |
30 |
TE00BL92 | Introduction to Chemistry | 3 |
TE00BL94 | CAD | 5 |
TE00BV70 | Introduction to Mathematical Sciences | 5 |
TE00BS59 | Basics of Quality and Standards | 5 |
TE00CK42 | Brewing Technology and Working in Brewery Environment | 1 - 10 |
PBIOKES23-1019 |
Bachelor's Thesis
(Choose all) |
20 |
5021150 | Thesis, Methodology | 5 |
5021151 | Thesis, implementation | 10 |
5021152 | Thesis, Reporting and Maturity Test | 5 |