Siirry suoraan sisältöön

Big Data EngineeringLaajuus (5 op)

Tunnus: TT00CN70

Laajuus

5 op

Osaamistavoitteet

After completing the course the student can:
- describe basic solutions for data architectures and big data
- select and use suitable data architecture
- apply ETL process and tools for handling of big data

Sisältö

Architecture and Components of Big Data Frameworks
ETL process with Big Data for batch and streaming
Practical work with suitable tools and frameworks

Ilmoittautumisaika

04.12.2024 - 14.01.2025

Ajoitus

14.01.2025 - 30.04.2025

Opintopistemäärä

5 op

Toteutustapa

Lähiopetus

Yksikkö

Tekniikka ja liiketoiminta

Toimipiste

Kupittaan kampus

Opetuskielet
  • Englanti
Paikat

0 - 80

Opettaja
  • Tommi Tuomola
Ajoitusryhmät
  • Ryhmä 1 (Koko: 35. Avoin AMK: 0.)
  • Ryhmä 2 (Koko: 35. Avoin AMK: 0.)
Ryhmät
  • PTIETS23deai
    Data Engineering and Artificial Intelligence
  • PTIVIS23I
    Data Engineering and Artificial Intelligence
Pienryhmät
  • Ryhmä 1
  • Ryhmä 2

Tavoitteet

After completing the course the student can:
- describe basic solutions for data architectures and big data
- select and use suitable data architecture
- apply ETL process and tools for handling of big data

Sisältö

Architecture and Components of Big Data Frameworks
ETL process with Big Data for batch and streaming
Practical work with suitable tools and frameworks

Oppimateriaalit

Teacher provided lecture material
Supporting public online material
All needed material (or at least a link to them) will be available in itslearning.

Opetusmenetelmät

Contact learning, practical exercises, independent study

Tenttien ajankohdat ja uusintamahdollisuudet

There's an exam in April, re-exam in May.

Pedagogiset toimintatavat ja kestävä kehitys

Given examples and exercises support each topic studied during the lectures. Additional material in the form of tutorials and reliable information sources is provided.

Opiskelijan ajankäyttö ja kuormitus

Contact hours 44 h
Independent studying 91h, including:
- Studying the course material
- Completing exercises
- Exam

Sisällön jaksotus

-The basic idea of big data engineering methods and pipelines
-different components and processes
-integration of said components (MQ systems)
-data engineering frameworks (Apache family)
-The goal of the course is to be able to build a data pipeline from start to finish and to understand both the process and the different components and their role.

Viestintäkanava ja lisätietoja

Itslearning and contact classes are the main communication channels used on this course.

The student is required to have a computer capable of running a simple Ubuntu virtual machine and basic skills to work with Ubuntu command line.

Arviointiasteikko

H-5

Arviointimenetelmät ja arvioinnin perusteet

Homework exercises returned throughout the course
Small exam at the end of the course

11 sets of exercises, each worth 4 points, max 44 points.
Exam, max 22 points.

Required minimum to pass:
33 points in total.
22 points from the exercises.
11 points from the exam.

Hylätty (0)

< 33 points

Or < 22 points from the exercises
or < 11 points from the exam

Arviointikriteerit, tyydyttävä (1-2)

33-46 total points.

Arviointikriteerit, hyvä (3-4)

47-59 total points.

Arviointikriteerit, kiitettävä (5)

60-66 total points.

Ilmoittautumisaika

04.12.2024 - 13.01.2025

Ajoitus

13.01.2025 - 30.04.2025

Opintopistemäärä

5 op

Toteutustapa

Lähiopetus

Yksikkö

Tekniikka ja liiketoiminta

Toimipiste

Kupittaan kampus

Opetuskielet
  • Englanti
Paikat

0 - 40

Opettaja
  • Tommi Tuomola
Ryhmät
  • PTIVIS22H
    Health Technology

Tavoitteet

After completing the course the student can:
- describe basic solutions for data architectures and big data
- select and use suitable data architecture
- apply ETL process and tools for handling of big data

Sisältö

Architecture and Components of Big Data Frameworks
ETL process with Big Data for batch and streaming
Practical work with suitable tools and frameworks

Oppimateriaalit

Teacher provided lecture material
Supporting public online material
All needed material (or at least a link to them) will be available in itslearning.

Opetusmenetelmät

Contact learning, practical exercises, independent study

Tenttien ajankohdat ja uusintamahdollisuudet

There's an exam in April, re-exam in May

Pedagogiset toimintatavat ja kestävä kehitys

Given examples and exercises support each topic studied during the lectures. Additional material in the form of tutorials and reliable information sources is provided.

Opiskelijan ajankäyttö ja kuormitus

Contact hours 44 h
Independent studying 91h, including:
- Studying the course material
- Completing exercises
- Exam

Sisällön jaksotus

-The basic idea of big data engineering methods and pipelines
-different components and processes
-integration of said components (MQ systems)
-data engineering frameworks (Apache family)
-The goal of the course is to be able to build a data pipeline from start to finish and to understand both the process and the different components and their role.

Viestintäkanava ja lisätietoja

Itslearning and contact classes are the main communication channels used on this course.

The student is required to have a computer capable of running a simple Ubuntu virtual machine and basic skills to work with Ubuntu command line.

Arviointiasteikko

H-5

Arviointimenetelmät ja arvioinnin perusteet

Homework exercises returned throughout the course
Small exam at the end of the course

11 sets of exercises, each worth 4 points, max 44 points.
Exam, max 22 points.

Required minimum to pass:
33 points in total.
22 points from the exercises.
11 points from the exam.

Hylätty (0)

< 33 points

Or < 22 points from the exercises
or < 11 points from the exam

Arviointikriteerit, tyydyttävä (1-2)

33-46 total points

Arviointikriteerit, hyvä (3-4)

47-59 total points.

Arviointikriteerit, kiitettävä (5)

60-66 total points.

Ilmoittautumisaika

29.11.2023 - 18.01.2024

Ajoitus

08.01.2024 - 30.04.2024

Opintopistemäärä

5 op

Toteutustapa

Lähiopetus

Yksikkö

Tekniikka ja liiketoiminta

Toimipiste

Kupittaan kampus

Opetuskielet
  • Englanti
Paikat

10 - 50

Koulutus
  • Tieto- ja viestintätekniikan koulutus
  • Tietojenkäsittelyn koulutus
  • Degree Programme in Information and Communications Technology
Opettaja
  • Tommi Tuomola
Vastuuopettaja

Tommi Tuomola

Ryhmät
  • PTIETS22deai
    PTIETS22 Datatekniikka ja Tekoäly
  • PTIVIS22I
    Data Engineering and AI

Tavoitteet

After completing the course the student can:
- describe basic solutions for data architectures and big data
- select and use suitable data architecture
- apply ETL process and tools for handling of big data

Sisältö

Architecture and Components of Big Data Frameworks
ETL process with Big Data for batch and streaming
Practical work with suitable tools and frameworks

Oppimateriaalit

Teacher provided lecture material
Supporting public online material
Teacher provided virtual machines
All needed material (or at least a link to them) will be available in itslearning.

Opetusmenetelmät

Contact learning, practical exercises, independent study

Pedagogiset toimintatavat ja kestävä kehitys

Given examples and exercises support each topic studied during the lectures. Additional material in the form of tutorials and reliable information sources is provided.

Opiskelijan ajankäyttö ja kuormitus

Contact hours 56 h
Inpendent studying 79h, including:
- Studying the course material
- Completing exercises
- Project

Sisällön jaksotus

-The basic idea of data engineering methods and pipelines
-different components
-integration of said components (MQ systems)
-data engineering frameworks (Apache family)
-The goal of the course is to be able to build a data pipeline from start to finish

Viestintäkanava ja lisätietoja

Itslearning and contact classes are the main communication channels used on this course.

The student is required to have a computer capable of running a simple Ubuntu virtual machine.

Arviointiasteikko

H-5

Arviointimenetelmät ja arvioinnin perusteet

Homework exercises returned throughout the course
Small project at the end of the course

Ilmoittautumisaika

02.12.2023 - 16.01.2024

Ajoitus

01.01.2024 - 30.04.2024

Opintopistemäärä

5 op

Toteutustapa

Lähiopetus

Yksikkö

Tekniikka ja liiketoiminta

Toimipiste

Kupittaan kampus

Opetuskielet
  • Englanti
Paikat

20 - 40

Koulutus
  • Tieto- ja viestintätekniikan koulutus
  • Degree Programme in Information and Communications Technology
Opettaja
  • Tommi Tuomola
Vastuuopettaja

Tommi Tuomola

Ryhmät
  • PTIVIS21H
    Terveysteknologia

Tavoitteet

After completing the course the student can:
- describe basic solutions for data architectures and big data
- select and use suitable data architecture
- apply ETL process and tools for handling of big data

Sisältö

Architecture and Components of Big Data Frameworks
ETL process with Big Data for batch and streaming
Practical work with suitable tools and frameworks

Oppimateriaalit

Teacher provided lecture material
Supporting public online material
Teacher provided virtual machines
All needed material (or at least a link to them) will be available in itslearning.

Opetusmenetelmät

Contact learning, practical exercises, independent study

Pedagogiset toimintatavat ja kestävä kehitys

Given examples and exercises support each topic studied during the lectures. Additional material in the form of tutorials and reliable information sources is provided.

Opiskelijan ajankäyttö ja kuormitus

Contact hours 56 h
Inpendent studying 79h, including:
- Studying the course material
- Completing exercises
- Project

Sisällön jaksotus

-Introduction to data engineering
-The basic idea of data engineering methods and pipelines
-different components
-integration of said components (MQ systems)
-data engineering frameworks (Apache family)

Viestintäkanava ja lisätietoja

Itslearning and contact classes are the main communication channels used on this course.

The student is required to have a computer capable of running a simple Ubuntu virtual machine.

Arviointiasteikko

H-5

Arviointimenetelmät ja arvioinnin perusteet

Homework exercises returned throughout the course
Small project at the end of the course