Skip to main content

Data Analytics and Machine Learning (5 cr)

Code: 3011633-3003

General information


Enrollment
11.12.2021 - 21.01.2022
Registration for the implementation has ended.
Timing
10.01.2022 - 25.04.2022
Implementation has ended.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Engineering and Business
Campus
Kupittaa Campus
Teaching languages
Finnish
Seats
0 - 50
Teachers
Matti Kuikka
Golnaz Sahebi
Tuomo Helo
Groups
PTIETS20swis
PTIETS20 Software Development and Information Security
Course
3011633
No reservations found for realization 3011633-3003!

Evaluation scale

H-5

Content scheduling

Johdatus koneoppimiseen
Koneoppimisprojektin vaiheet:
- tehtävään perehtyminen
- datan tarkastelu
- datan jalostaminen
- mallin valinta ja arviointi
- mallin ottaminen tuotantoon
Numeerinen ennustaminen
Luokittelu
Klusterianalyysi
*
Etenemme pääpiirteissään kurssikirjan lukujen mukaisesti.
Ryhmätyö

Objective

After completing the course the student:
- Can define the main concepts related to data analytics and machine learning
- Understands the value and the drivers for data analytics and machine learning
- Can describe the processes of data analytics and machine learning
- Can use some tools for data analytics and machine learning

Content

Introduction to data analytics and machine learning
Data analytics process and methods
Machine learning process and methods
Practical work

Materials

Kurssikirja:

Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)

Luemme valikoiden kirjan lukuja 1-10. Niissä on noin 300 sivua, mutta osasta hypätään yli.

Kurssikirja on luettavissa sähköisessä muodossa oppilaitoksemme eBook Central -tietokannasta.

Kurssilla on myös luettavaa, joka ilmoitetaan kurssin aikana.

Exam schedules

Ei tenttiä.

Pedagogic approaches and sustainable development

Opintojakso sisältää noin 12 ohjattua työskentely- ja teoriakertaa, 10 henkilökohtaista harjoitustehtävää ja ryhmätyön.
*
Ryhmätyö tehdään 3-4 hengen ryhmissä ohjauskertojen ulkopuolella. Ryhmätyön esittämiseen ryhmä varaa 15 minuutin ajan ohjauskertojen ulkopuolelta.

Evaluation methods and criteria

Opintojakso arvostellaan skaalalla 0-5.
*
Saadakseen hyväksytyn suorituksen opiskelijan on saatava hyväksyttävä merkintä sekä 1) henkilökohtaisista harjoitustehtävistä että 2) ryhmätyöstä.
*
Jokaisesta harjoitustehtävästä voi saada vähintään 10 pistettä. Kaikista 10 harjoitustehtävästä voi saada siis yhteensä maksimissaan 100 pistettä.
Henkilökohtaiset harjoitustehtävät: 25 pistettä -> arvosana 0,5; 38 -> 1,0; 50 -> 1,5; 63 -> 2,0; 75 - 2,5; 88 -> 3,0. Tehtävät tarkastetaan demoissa. Demokerroilla on oltava läsnä.
Osallistuminen ryhmätyöhön: 0,0 - 2,0.
*
(Molemmissa tapauksissa 0,5 on ensimmäinen hyväksytty arvosana)

Go back to top of page