Data-analytiikka ja Koneoppiminen (5 op)
Toteutuksen tunnus: 3011633-3004
Toteutuksen perustiedot
- Ilmoittautumisaika
-
30.11.2022 - 19.01.2023
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
09.01.2023 - 28.04.2023
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Tekniikka ja liiketoiminta
- Toimipiste
- Kupittaan kampus
- Opetuskielet
- suomi
- Paikat
- 20 - 35
- Opettajat
- Matti Kuikka
- Tuomo Helo
- Ryhmät
-
PTIETS21swisPTIETS21 Ohjelmistojen kehittäminen ja Tietojärjestelmät
- Opintojakso
- 3011633
Arviointiasteikko
H-5
Sisällön jaksotus
Johdatus koneoppimiseen
Koneoppimisprojektin vaiheet:
- tehtävään perehtyminen
- datan tarkastelu
- datan jalostaminen
- mallin valinta ja arviointi
- mallin ottaminen tuotantoon
Numeerinen ennustaminen
Luokittelu
Klusterianalyysi
*
Etenemme pääpiirteissään kurssikirjan lukujen mukaisesti.
Ryhmätyö
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Kurssikirja:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)
tai saman kirjan 3. painos (November 2022)
Luemme valikoiden kirjan lukuja 1-10. Niissä on noin 300 sivua, mutta osasta hypätään yli.
Kurssikirja on luettavissa sähköisessä muodossa oppilaitoksemme eBook Central -tietokannasta.
Kurssilla on myös luettavaa, joka ilmoitetaan kurssin aikana
Tenttien ajankohdat ja uusintamahdollisuudet
Ei tenttiä.