Insinöörimatematiikan perusteet (5 op)
Toteutuksen tunnus: TE00CE16-3006
Toteutuksen perustiedot
Ilmoittautumisaika
31.05.2023 - 16.09.2023
Ajoitus
04.09.2023 - 15.12.2023
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Englanti
Paikat
75 - 120
Koulutus
- Degree Programme in Information and Communications Technology
Opettaja
- Noora Maritta Nieminen
Ajoitusryhmät
- Pienryhmä 1 (Koko: 0. Avoin AMK: 0.)
- Pienryhmä 2 (Koko: 0. Avoin AMK: 0.)
- Pienryhmä 3 (Koko: 0. Avoin AMK: 0.)
Ryhmät
-
PINFOS23CPINFOS23C
-
PINFOK23APINFOK23A
Pienryhmät
- Pienryhmä 1
- Pienryhmä 2
- Pienryhmä 3
- 14.11.2023 13:00 - 15:00, Theory, Engineering Precalculus TE00CE16-3006
- 14.11.2023 15:00 - 17:00, Group 2/Practice, Engineering Precalculus TE00CE16-3006
- 16.11.2023 10:00 - 12:00, Group 3/Practice, Engineering Precalculus TE00CE16-3006
- 17.11.2023 12:00 - 14:00, Group 1/Practice, Engineering Precalculus TE00CE16-3006
- 21.11.2023 13:00 - 15:00, Theory, Engineering Precalculus TE00CE16-3006
- 21.11.2023 15:00 - 17:00, Group 2/Practice, Engineering Precalculus TE00CE16-3006
- 23.11.2023 10:00 - 12:00, Group 3/Practice, Engineering Precalculus TE00CE16-3006
- 24.11.2023 12:00 - 14:00, Group 1/Practice, Engineering Precalculus TE00CE16-3006
- 28.11.2023 13:00 - 15:00, Theory, Engineering Precalculus TE00CE16-3006
- 28.11.2023 15:00 - 17:00, Group 2/Practice, Engineering Precalculus TE00CE16-3006
- 30.11.2023 10:00 - 12:00, Group 3/Practice, Engineering Precalculus TE00CE16-3006
- 01.12.2023 12:00 - 14:00, Group 1/Practice, Engineering Precalculus TE00CE16-3006
- 05.12.2023 13:00 - 15:00, Theory, Engineering Precalculus TE00CE16-3006
- 12.12.2023 10:00 - 12:00, Theory, Engineering Precalculus TE00CE16-3006
Tavoitteet
Opintojakson suoritettuaan opiskelija osaa:
- ratkaista yhtälöitä, myös juuri-, eksponentti- ja logaritmiyhtälöitä
- käyttää determinantteja ja matriiseja
- soveltaa piste- ja ristituloa
- tehdä peruslaskutoimituksia kompleksiluvuilla
- käyttää oikein opintojakson sisältöön liittyviä matemaattisia termejä ja merkintöjä
Sisältö
- Lukujoukot ja lukujärjestelmät
- Reaalifunktioista
- Polynomiyhtälöt ja -epäyhtälöt, eksponentti- ja logaritmiyhtälöt
- Suorakulmaisen kolmion trigonometriaa
- Kompleksiluvut
- Vektori- ja matriisilaskentaa
Oppimateriaalit
ITSL-sivulta löytyvät:
Luentomuistiinpanot
Laskuharjoitusten tehtävät ja vastaukset
Taulukkokirja (MAOL tai TAM)
Funktiolaskin (Casio fx-82EX tai vastaava)
Opetusmenetelmät
Luennot
Laskuharjoitukset
Kokeet
Tenttien ajankohdat ja uusintamahdollisuudet
OSA1:
Osakoe1 ja sen uusinta marraskuussa
OSA2:
Osakoe2 ja sen uusinta joulukuussa
Lopullinen uusinta seuraavan vuoden tammikuussa:
voi tehdä jomman kumman tai kummatkin osakokeista
Opiskelijan ajankäyttö ja kuormitus
Lähiopetus 52 h
Itsenäinen työskentely n. 68 h
Kokeet ja niihin valmistautuminen n. 15 h
Sisällön jaksotus
Syyskuu, KERTAUSOSA:
- peruslaskutoimitukset, murtoluvut
- potenssi, juuri, logaritmi
- polynomit
- 1. ja 2. asteen yhtälöt, yhtälöpari
Syyskuu-marraskuu, OSA1:
- funktiot ja yhtälöt, potenssiyhtälö, juuriyhtälö, eksponenttiyhtälö, logaritmiyhtälö, epäyhtälö
- trigonometria
- kompleksiluvut
Marraskuu-joulukuu, OSA2:
- matriisit, determinantit
- vektorit
- lukujärjestelmät
Viestintäkanava ja lisätietoja
Sähköposti.
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
Kummastakin osakokeesta on saatava hyväksytty tulos, 8/20. Osakokeiden tulokset lasketaan yhteen, ja tähän summaan lisätään laskuharjoituksista saatavat lisäpisteet. Laskuharjoituksista saatavat lisäpisteet parantavat arvosanaa, niitä voi saada max 10 pistettä.
Arvosanataulukko pisteiden mukaan:
0-15: 0
16-22: 1
23-29: 2
30-35: 3
36-42: 4
43-50: 5
Hylätty (0)
Ei tarpeeksi pisteitä kokeista.
Arviointikriteerit, tyydyttävä (1-2)
Arvosanataulukon mukaan.
Arviointikriteerit, hyvä (3-4)
Arvosanataulukon mukaan.
Arviointikriteerit, kiitettävä (5)
Arvosanataulukon mukaan.
Esitietovaatimukset
Lukion lyhyt tai pitkä matematiikan oppimäärä
TAI
peruskoulun matematiikan oppimäärä, ammattiopetuksen matematiikan opintojaksot sekä Johdatus matematiikkaan ja fysiikkaan –opintojakson sisältö
TAI
vastaavat tiedot ja taidot