Siirry suoraan sisältöön

Calculus (5 op)

Toteutuksen tunnus: TE00BX68-3006

Toteutuksen perustiedot


Ilmoittautumisaika
01.12.2023 - 05.01.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
08.01.2024 - 30.04.2024
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Opetuskielet
englanti
Koulutus
Energia- ja ympäristötekniikan koulutus
Prosessi- ja materiaalitekniikan koulutus
Bio- ja kemiantekniikan koulutus
Opettajat
Aaro Mustonen
Ryhmät
PENERS23
Energy and Environmental Engineering, S23
Opintojakso
TE00BX68

Toteutuksella on 6 opetustapahtumaa joiden yhteenlaskettu kesto on 11 t 0 min.

Aika Aihe Tila
Ke 03.04.2024 klo 10:00 - 12:00
(2 t 0 min)
Calculus TE00BX68-3006
EDU_3003 Matias muunto byod
To 04.04.2024 klo 10:00 - 12:00
(2 t 0 min)
Calculus TE00BX68-3006
EDU_3004 Josef muunto byod
Ma 08.04.2024 klo 14:00 - 16:00
(2 t 0 min)
Calculus TE00BX68-3006
EDU_3003 Matias muunto byod
Ke 10.04.2024 klo 10:00 - 12:00
(2 t 0 min)
Calculus Revision TE00BX68-3006
EDU_2002 Ivar muunto byod
Ma 22.04.2024 klo 14:00 - 16:00
(2 t 0 min)
Calculus Subtest 2 TE00BX68-3006
EDU_3003 Matias muunto byod
Pe 26.04.2024 klo 12:00 - 13:00
(1 t 0 min)
Calculus Subtest 2 and Electrical physics Exam feedback TE00BX68-3006
EDU_2002 Ivar muunto byod
Muutokset varauksiin voivat olla mahdollisia.

Arviointiasteikko

H-5

Sisällön jaksotus

Opintojaksolla käydään läpi differentiaali- ja integraalilaskennan sekä differentiaaliyhtälöiden perusteet. Lisäksi tutustutaan kompleksilukuihin ja raja-arvoihin. Tavoitteena on laajentaa insinööriopinnoissa ja työtehtävissä tarvittavan matemaattisen ajattelun pohjaa sekä kykyä lukea ja käyttää matematiikan kieltä ammatillisissa yhteyksissä. Lisäksi tavoitteena on tutustua MATLAB-ohjelmiston käyttöön matemaattisten ongelmien mallintamisessa ja ratkaisemisessa. Kurssilla pyritään käyttämään mahdollisimman paljon insinöörityöhön liittyviä esimerkkejä.

Tarkempi sisältö:
- kompleksiluvut ja niiden sovelluksia
- raja-arvot ja derivaatan määritelmä
- derivoinnin laskusäännöt
- differentiaalin käsite
- derivaatan sovelluksia
- määrätty integraali ja integraalifunktio
- integraalin laskusääntöjä
- integraalin sovelluksia
- differentiaaliyhtälöt ja niiden ratkaiseminen
- differentiaaliyhtälöiden sovelluksia

Tavoitteet

Opiskelija ymmärtää differentiaali- ja integraalilaskennan perusasiat ja osaa
• Soveltaa derivaattaa funktion kulun tutkimiseen
• Soveltaa differentiaalia virhelaskennassa
• Soveltaa määrättyä integraalia esimerkiksi pinta-alojen ja keskiarvojen laskemisessa
• Soveltaa differentiaaliyhtälöitä oman alansa ilmiöiden mallintamisessa ja ymmärtää differentiaaliyhtälöiden ratkaisemisen periaatteet.

Sisältö

• Raja-arvo
• Derivaatta
• Differentiaali
• Integraalifunktio
• Määrätty integraali
• Separoituvat differentiaaliyhtälöt
• Lineaariset differentiaaliyhtälöt

Oppimateriaalit

Opintojakso seuraa Open Stax -sivuston oppikirjan Calculus 1 sisältöä (https://openstax.org/details/books/calculus-volume-1)
Lisäksi opintojaksolla käytetään muuta, verkossa ja lähiopetuskerroilla esitettävää materiaalia.
Opintojakson aikana hyödynnetään myös MATLAB-ohjelmaa, joten opiskelijalla tulisi olla käytettävissä henkilökohtainen tietokone.
Suomenkielinen tukikirja on "Insinöörin matematiikka, Tuomenlehto et.al.".

Opetusmenetelmät

Opiskelijan oman tiedon konstruoimista tukevat menetelmät:
Lähiopetus, verkko-oppiminen, yhteistoiminnallinen oppiminen, itsenäinen työskentely.
Harjoitustehtävien suorittamisella on keskeinen rooli oppimisessa ja niiden osalta kannustetaan ryhmätyöskentelyyn.

Tenttien ajankohdat ja uusintamahdollisuudet

Välikokeet viikoilla 9 ja 17.

Pedagogiset toimintatavat ja kestävä kehitys

Opiskelijan omaa aktiivisuutta ja tiedon konstruoimista tukevat oppimismenetelmät

Toteutuksen valinnaiset suoritustavat

-

Opiskelijan ajankäyttö ja kuormitus

- Teorialuennot ja laskuharjoitukset noin 60t
- Osaamista mittaavat välikokeet 2x2t (tai lopputentti 2t)
- Itsenäinen harjoittelu noin 70t (noin 4 tuntia/vk + harjoittelu kokeisiin/kokeeseen)

Arviointimenetelmät ja arvioinnin perusteet

Suomeksi
Opintojakson kokonaisarvosana 0-5 muodostuu kerättyjen kurssipisteiden avulla (max 100 p). Kurssipisteitä on mahdollista kerätä
- Kahdesta osakokeesta (á max 50 p)
- Itsenäisistä harjoitustehtävistä ViLLE:ssä (max 6 p)
- Viikottaisista laskuharjoituksista (max 12 p). Laskutehtävähyvityksen saaminen edellyttää laskutehtävien palautusta etukäteen sekä laskuharjoitustuntiin tai malliratkaisuihin perustuvaa itsearviointia, joka on palautettu määräaikaan mennessä (viikon loppuun mennessä).

Harjoituksista kerättävien kurssipisteiden yhteismäärä 18 p vastaa noin 1,5 kurssinumeroa.

Jos opiskelija suorittaa kurssin välikokeilla, kumpaankin kokeeseen on osallistuttava. Jos toisen välikokeen suoritus jää uupumaan, uusitaan kurssi tentillä.

Itsenäisesti Itsissä suoritettavat osaamistestit voivat vaikuttaa positiivisesti arvosanan raja-tapauksessa.

Hylätty (0)

Opiskelija ei saavuta vähintään 40 % kurssipisteistä = 40p
Opiskelija ei ole osallistunut molempiin välikokeisiin.

Arviointikriteerit, tyydyttävä (1-2)

Arvosana 1 edellyttää vähintään 40 % kurssipisteistä = 40p
Arvosana 2 edellyttää vähintään 52 % kurssipisteistä = 52p

Arviointikriteerit, hyvä (3-4)

Arvosana 3 edellyttää vähintään 40 % kurssipisteistä = 64p
Arvosana 4 edellyttää vähintään 52 % kurssipisteistä = 76p

Arviointikriteerit, kiitettävä (5)

Arvosana 5 edellyttää vähintään 88 % kurssipisteistä = 88p

Siirry alkuun