Skip to main content

Data Analytics and Machine Learning (5 cr)

Code: 3011633-3006

General information


Enrollment

01.12.2023 - 17.01.2024

Timing

08.01.2024 - 30.04.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages

  • Finnish
  • English

Seats

10 - 35

Degree programmes

  • Degree Programme in Business Information Technology

Teachers

  • Golnaz Sahebi
  • Matti Kuikka

Teacher in charge

Matti Kuikka

Groups

  • PTIETS22swis
    PTIETS22 Software Development and Information Systems
  • 12.01.2024 09:00 - 12:00, Aloitus, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 16.01.2024 14:00 - 15:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 19.01.2024 09:00 - 12:00, Teoria ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 23.01.2024 14:00 - 15:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 26.01.2024 09:00 - 12:00, Teoria ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 02.02.2024 09:00 - 12:00, Teoria ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 06.02.2024 14:00 - 15:00, (TEAMS) Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 09.02.2024 09:00 - 12:00, Teoria ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 13.02.2024 14:00 - 15:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 16.02.2024 09:00 - 12:00, Teoria ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 01.03.2024 09:00 - 12:00, Teori ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 08.03.2024 09:00 - 12:00, Teori ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 12.03.2024 14:00 - 15:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 15.03.2024 09:00 - 12:00, Teori ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 20.03.2024 13:00 - 14:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 22.03.2024 09:00 - 12:00, Teori ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 27.03.2024 13:00 - 16:00, Teoria ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 02.04.2024 14:00 - 15:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 05.04.2024 09:00 - 12:00, Guidance to Team work, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 09.04.2024 14:00 - 15:00, Kysely- ja tukitunti, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 12.04.2024 09:00 - 12:00, Teori ja käytäntö, Data-analytiikka ja Koneoppiminen 3011633-3006
  • 19.04.2024 10:00 - 13:00, Demonstrations. Data-analytiikka ja Koneoppiminen 3011633-3006
  • 23.04.2024 12:00 - 15:00, Team work presentations, Data-analytiikka ja Koneoppiminen 3011633-3006

Objective

After completing the course the student:
- Can define the main concepts related to data analytics and machine learning
- Understands the value and the drivers for data analytics and machine learning
- Can describe the processes of data analytics and machine learning
- Can use some tools for data analytics and machine learning

Content

Introduction to data analytics and machine learning
Data analytics process and methods
Machine learning process and methods
Practical work

Materials

Mainly according to the book (from chapters 1-10)
[Aurélien Géron] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, Publisher : O'Reilly Media; 2022, 3rd Edition

In addition: Material prepared by the teacher, online material and tasks in the learning environment.

International connections

The course includes approximately 12 guided working and theory sessions, 9 personal practice tasks and group work.
*
Group work is done in groups of 3-4 people outside of guidance sessions. The group sets aside 15 minutes outside of guidance sessions to present the group work.

Student workload

Contact hours:
- Course start-up: 2h
- Weeks 3 - 5: Theory & practice (3h/week): 5 x 3h = 15h
- Weeks 9 - 15: Theory & practice (3h/week): 7 x 3h = 21h
- Week 16: Project work presentations: 3h
- In addition, in weeks 4 - 15, about 10 support and inquiry hours: 10 x 1h = 10h

Total contact hours: about 51 hours

Independent study and homework: about 90 h

Content scheduling

Week 2:
- Machine learning landscape (Introduction to machine learning)
Weeks 3 - 7:
- End-to-end machine learning process
Weeks 9-15:
- Presentation of teamwork
- Classification
- Training linear models
- Decision trees
- Unsupervised learning
- Neural networks (Introduction to neural networks)
Week 16: Presentation of project works

Further information

The course materials and assignments are at ITS.
The exercises are mainly performed using Jupyter Notebook.
Communication about the course via ITS, but also via the course's Teams channel.

Evaluation scale

H-5

Assessment methods and criteria

The course is graded on a scale of 0-5.

You get points from the exercises n the contact class and homework, which affect the evaluation by 3 units.
About half of the exercises are done in contact classes.

The project work also affects the evaluation by 2 units. The project work is graded in ITS from 0 to 5, which is influenced by both the teacher's assessment and the peer assessment given by the rest of the project team.

The course can only be passed by doing both practice tasks and participating in project work.

Assessment criteria, fail (0)

The student does NOT participate in the project work or gets the project work grade 0 (Failed) OR did not get at least 40% of the points in the course exercises.

Assessment criteria, satisfactory (1-2)

The student got 40-59% of the points for the exercises in the course AND got a grade of 1 - 3 for the project work.

Assessment criteria, good (3-4)

The student got 60-84% of the points for the exercises in the course AND got a grade of 3 - 4 for the project work.

Assessment criteria, excellent (5)

The student got at least 85% of the points for the exercises in the course AND got a grade 5 for the project work.