AI project (5 op)
Toteutuksen tunnus: MS00CN48-3001
Toteutuksen perustiedot
Ilmoittautumisaika
02.12.2023 - 16.01.2024
Ajoitus
26.02.2024 - 30.04.2024
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Opetuskielet
- Suomi
- Englanti
Koulutus
- Insinööri (ylempi AMK), Data Engineering and AI
- Tradenomi (ylempi AMK), Data Engineering and AI
Opettaja
- Golnaz Sahebi
- Pertti Ranttila
Ryhmät
-
YDATIS23Insinööri (ylempi AMK), Data Engineering and AI
-
YDATTS23Tradenomi (ylempi AMK), Data Engineering and AI
- 11.03.2024 08:30 - 12:00, AI project MS00CN48-3001
- 12.03.2024 08:30 - 12:00, AI project MS00CN48-3001
- 15.04.2024 08:30 - 12:00, AI project MS00CN48-3001
- 16.04.2024 08:30 - 12:00, AI project MS00CN48-3001
Tavoitteet
After completing the course, the students can
- work in the AI project
- describe and understand how AI projects are implemented
Sisältö
Practical project related to AI
Oppimateriaalit
The course materials will be announced later during the course.
Tenttien ajankohdat ja uusintamahdollisuudet
No Exam
Opiskelijan ajankäyttö ja kuormitus
Contact hours:
- 4 times 4h theory and practice: 4 x 4h = 16 hours
Final project: approximately 114 hours
Total: approximately: 130 hours
Sisällön jaksotus
A deep learning-focused, project-based course that empowers master's students to explore and develop AI projects, fostering their ability to conceive, implement, and optimize intelligent solutions.
Session 1: AI Project Lifecycle and Data Selection
Session 2: Data Preprocessing and Model Selection
Session 3: Presenting First Results and Discussion
Session 4: Algorithm Optimization and Tuning
Viestintäkanava ja lisätietoja
This course is project-based, requiring students to possess knowledge in machine learning and deep learning, specifically in image recognition and Sequential models.
Consequently, it is advisable to enroll in the 'Components and Applications of Artificial Intelligence' course first. In that course, students learn how to employ deep neural networks for image recognition (using CNN) and using RNN for sequential models. This foundational knowledge will better prepare students for the project-based nature of this course.
Arviointiasteikko
Hyväksytty/Hylätty