Advanced topics in Data Engineering & AI (5 op)
Toteutuksen tunnus: TT00CN74-3001
Toteutuksen perustiedot
Ilmoittautumisaika
01.06.2024 - 09.09.2024
Ajoitus
02.09.2024 - 15.12.2024
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Englanti
Paikat
10 - 40
Koulutus
- Tieto- ja viestintätekniikan koulutus
- Tietojenkäsittelyn koulutus
- Degree Programme in Information and Communications Technology
Opettaja
- Mojtaba Jafaritadi
- Tommi Tuomola
Vastuuopettaja
Tommi Tuomola
Ryhmät
-
PTIETS22deaiPTIETS22 Datatekniikka ja Tekoäly
-
PTIVIS22IData Engineering and AI
- 04.09.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 05.09.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 09.09.2024 12:00 - 14:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 12.09.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 16.09.2024 12:00 - 14:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 19.09.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 25.09.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 26.09.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 02.10.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 03.10.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 09.10.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 10.10.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 23.10.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 24.10.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 30.10.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 31.10.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 06.11.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 07.11.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 13.11.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 14.11.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 20.11.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 21.11.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 27.11.2024 10:00 - 12:00, Theory, Advanced topics in Data Engineering & AI TT00CN74-3001
- 28.11.2024 12:00 - 13:00, Exercise, Advanced topics in Data Engineering & AI TT00CN74-3001
- 04.12.2024 09:00 - 12:00, Exam, Advanced topics in Data Engineering & AI TT00CN74-3001
Tavoitteet
After completing the course, the student can:
- work with advanced topics in data engineering and AI
Sisältö
Advanced topics in Data Engineering, AI and data analytics such as
- application security
- data privacy
- legislation on data protection
- ethics of AI
Oppimateriaalit
Course materials are prepared by the lecturer from various sources including books, online material, etc.
Recommended books to study in this course are:
-- Practical Data Privacy: Enhancing Privacy and Security in Data 1st Edition by Katharine Jarmul
-- Fundamentals of Data Engineering: Plan and Build Robust Data Systems 1st Edition
by Joe Reis and Matt Housley
Opetusmenetelmät
Weekly contact sessions with total of 3 hours of theory and practical exercises.
Tenttien ajankohdat ja uusintamahdollisuudet
Exams including retake will be in Week 48 or 49 (at the same day as we have the regular lectures).
Pedagogiset toimintatavat ja kestävä kehitys
The course includes about 11 theory sessions and personal practice tasks.
This learning method combines theoretical knowledge with practical applications and real-world examples. It emphasizes understanding data engineering fundamental and privacy AI concepts, studying relevant technologies and techniques, and exploring practical implementations and use cases. Hands-on exercises, case studies, and projects will be incorporated to reinforce the learning experience
Toteutuksen valinnaiset suoritustavat
The exercises are mainly performed using Jupyter Notebook or other types of code scripts. Students will use TensorFlow and/or PyTorch. Strong python programming skills are needed to complete the exercises in part II.
Opiskelijan ajankäyttö ja kuormitus
11 sessions (2.9-29.11.24 ) each 3 hours (2h lecture, 1h practice)+ Exam
Contact hours:
- Weeks 36 - 47: Theory & practice (3h/week): 11 x 3h = 33h
- Week 48: Exam: 2h
- In addition, about 5 support and inquiry hours (biweekly): 5x 1h = 5h
Total contact hours: 40 hours
Independent study and homework: about 90 h
Sisällön jaksotus
The course will be provided in two parts covering the following concepts:
Part I:
-- data security (encryption)
-- data privacy
-- data warehouses and data lakes
-- legislation on data protection (GDPR, data act)
Part II:
-- Data Regulations and Ethics in AI
-- Synthetic data generation
-- Differential privacy techniques
-- Decentralized machine learning and federated learning
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
This course comprises 100 points including:
-- 22 points (1+1p each contact class: Lecture and Practical Session)
-- 44points for exercises
-- 34points for the exam
-Participation and exercises (50% of total to pass): Students must achieve at least 50% of the points to pass the course. Participation points can only be gained by being present in class during the Lecture and Practical sessions.
- Exam (50% of total points to pass): Students must achieve at least 50% of the points in order to pass the course.
The course is graded on a scale of 0-5.
Grading will be according to the total points collected by the student during the course as well as the exam.
1: 50% (minimum to pass the course)
2: 60-69%
3: 70-79%
4: 80-89%
5: 90-100%
Hylätty (0)
<50% of total points or failed exam, exercise or participation points total.
Arviointikriteerit, tyydyttävä (1-2)
50-69% of the total points with passed exam, exercise and participation.
Arviointikriteerit, hyvä (3-4)
70-89% of the total points with passed exam, exercise and participation.
Arviointikriteerit, kiitettävä (5)
90-100% of the total points with passed exam, exercise and participation.