Siirry suoraan sisältöön

Applications of AI (5 op)

Toteutuksen tunnus: TT00CN77-3001

Toteutuksen perustiedot


Ilmoittautumisaika

04.12.2024 - 13.01.2025

Ajoitus

13.01.2025 - 30.04.2025

Opintopistemäärä

5 op

TKI-osuus

2 op

Toteutustapa

Lähiopetus

Yksikkö

Tekniikka ja liiketoiminta

Toimipiste

Kupittaan kampus

Opetuskielet

  • Englanti

Paikat

0 - 40

Koulutus

  • Tieto- ja viestintätekniikan koulutus
  • Tietojenkäsittelyn koulutus

Opettaja

  • Golnaz Sahebi
  • Matti Kuikka
  • Mojtaba Jafaritadi
  • Pertti Ranttila
  • Ali Khan
  • Jussi Salmi

Ryhmät

  • PTIETS22deai
    PTIETS22 Datatekniikka ja Tekoäly
  • PTIVIS22I
    Data Engineering and AI
  • 16.01.2025 08:00 - 10:00, Course Introduction, Applications of AI TT00CN77-3001
  • 23.01.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 30.01.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 06.02.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 13.02.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 27.02.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 06.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 13.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 20.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 27.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 03.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 10.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 17.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
  • 24.04.2025 08:00 - 10:00, Finals or exam, Applications of AI TT00CN77-3001

Tavoitteet

After completing the course, the student can:
- describe what kind of AI applications are available
- describe how AI based applications can be developed
- develop applications using AI

Sisältö

Actual content is decided during the course implementation phase.
The contents vary every year.

Oppimateriaalit

Material available via the learning environment (ITS).

Opetusmenetelmät

The course includes about 12 theory sessions and personal practice tasks (3h),

There will be also quest lecturers (from companies or RDI people)

Tenttien ajankohdat ja uusintamahdollisuudet

No exam or in week 17.

Pedagogiset toimintatavat ja kestävä kehitys

This learning method combines theoretical knowledge with practical applications and real-world examples.
Weekly assignments based on the topics covered.
Around half of the exercises are done during the contact hours.
Additionally, exercises for home work.

Additionally:
- Mid-term project: Develop a simple AI application (everyone have own project)
- Final project/exam: Comprehensive AI application using multiple techniques learned in the course (group work)

Toteutuksen valinnaiset suoritustavat

None.

Opiskelijan ajankäyttö ja kuormitus

Contact hours:
- Week 3: Course Introduction 2h
- Weeks 4 - 16: Theory & practice (3h/week): 12 x 3h = 36h
- Week 17: Exam/Finals 2h
Total contact hours: 40 hours

Independent study and homework: about 90 h

Total: approximately: 130 hours

Sisällön jaksotus

Weekly time schedule plan
3. Introduction to Course and AI-based applications & Examples of AI-Based Applications in various industries
4. Steps to develop AI Applications with a help of tools and frameworks
5. Data-Driven AI and techniques for data-driven AI development
6. Use of Open Data and building Decision Trees with it
7. Handling and processing tabular data and applications of tabular data
9. Generative AI and applications of generative AI (e.g., art, music, text generation)
10. Language Models (e.g., GPT, BERT) and NLP applications NLP
11. Computer Vison and it's real-world applications (e.g., facial recognition, autonomous vehicles)
12. Object Recognition and techniques & applications for object recognition
13. Synthetic Data and use cases of it.
14. Optimization in AI and applications of optimization in AI models
15. IBM Watson and practical applications with it (e.g. image recognition, NLP)
16. Building and training models using PyTorch & TensorFlow
17. Exam/Presentation of final project results
+ projects to build an AI application during the course (one alone and another in team)

Viestintäkanava ja lisätietoja

ItsLearning

Arviointiasteikko

H-5

Arviointimenetelmät ja arvioinnin perusteet

You can achieve points from participation, exercises, participation and exam/final project:
- 20% points from participation
- 50% points from practical exercises in class room and home work
- 30% points from the final project work/exam