Applications of AI (5 op)
Toteutuksen tunnus: TT00CN77-3001
Toteutuksen perustiedot
Ilmoittautumisaika
04.12.2024 - 16.01.2025
Ajoitus
16.01.2025 - 30.04.2025
Opintopistemäärä
5 op
TKI-osuus
2 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Englanti
Paikat
0 - 40
Koulutus
- Tieto- ja viestintätekniikan koulutus
- Tietojenkäsittelyn koulutus
Opettaja
- Golnaz Sahebi
- Pertti Ranttila
- Ali Khan
- Jussi Salmi
Ryhmät
-
PTIETS22deaiPTIETS22 Datatekniikka ja Tekoäly
-
PTIVIS22IData Engineering and AI
- 16.01.2025 09:00 - 10:00, Course Introduction, Applications of AI TT00CN77-3001
- 21.01.2025 12:00 - 15:00, AWS NLP Self Paced, Applications of AI TT00CN77-3001
- 30.01.2025 09:00 - 12:00, AWS NLP Self Paced, Applications of AI TT00CN77-3001
- 06.02.2025 09:00 - 12:00, AWS NLP Self Paced, Applications of AI TT00CN77-3001
- 13.02.2025 09:00 - 12:00, AWS NLP Self Paced, Applications of AI TT00CN77-3001
- 27.02.2025 08:00 - 11:00, AWS NLP Self Paced, Applications of AI TT00CN77-3001
- 06.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 13.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 20.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 27.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 03.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 10.04.2025 08:00 - 11:00, NLP Final Project Presentations, Applications of AI TT00CN77-3001
- 17.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 24.04.2025 08:00 - 10:00, Finals or exam, Applications of AI TT00CN77-3001
Tavoitteet
After completing the course, the student can:
- describe what kind of AI applications are available
- describe how AI based applications can be developed
- develop applications using AI
Sisältö
Actual content is decided during the course implementation phase.
The contents vary every year.
Oppimateriaalit
Material available via the learning environment (ITS).
Opetusmenetelmät
The course includes about 12 theory sessions and personal practice tasks (3h),
There will be also guest lecturers (from companies or RDI people)
Tenttien ajankohdat ja uusintamahdollisuudet
No exam or in week 17.
Pedagogiset toimintatavat ja kestävä kehitys
This learning method combines theoretical knowledge with practical applications and real-world examples.
Weekly assignments based on the topics covered.
Around half of the exercises are done during the contact hours.
Additionally, exercises for home work.
Additionally:
- Mid-term project: Develop a simple AI application (everyone have own project) for example in AWS academy NLP
- Final project/exam: Comprehensive AI application using multiple techniques learned in the course (group work)
Toteutuksen valinnaiset suoritustavat
None.
Opiskelijan ajankäyttö ja kuormitus
Contact hours:
- Week 3: Course Introduction 2h
Self paced AWS academy Module (3h/week): 6 x 3h = 18h
- Weeks 4 - 9 & Week 15: NLP - Total 6 weeks
- Week 8 - Winter Holidays
- Week 15 Final Project Presentations NLP
Theory & practice (3h/week): 6 x 3h = 18h
- Weeks 10 - 14 & 16 : Image Applications - Total 6 weeks
- Week 17: Exam/Finals 2h
Total contact hours: 40 hours
Independent study and homework: about 90 h
Total: approximately: 130 hours
Sisällön jaksotus
Part 1 NLP that covers 50% of the course is based on the AWS academy online course for NLP Natural Language Processing that includes the following modules:
Module 1 - Welcome to AWS Academy NLP
Module 2 - Introduction to Natural Language Processing (NLP)
Module 3 - Processing Text for NLP
Module 4 - Implementing Sentiment Analysis
Module 5 - Introducing Information Extraction
Module 6 - Introducing Topic Modeling
Module 7 - Working with Languages
Module 8 - Working with Generative AI
Module 9 - Course Wrap-up
Overall Topics:
1. Introduction to Course and AI-based applications & Examples of AI-Based Applications in various industries, AWS Academy registration
2. Steps to develop AI Applications with a help of tools and frameworks
3. Generative AI and applications of generative AI (e.g., art, music, text generation)
4. Language Models (e.g., GPT, BERT) and NLP applications NLP
5. Computer Vison and it's real-world applications (e.g., facial recognition, autonomous vehicles)
6. Object Recognition and techniques & applications for object recognition
+ projects to build an AI application during the course
Viestintäkanava ja lisätietoja
ItsLearning
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
For NLP Part:
AWS Academy Course labs: 40 points
Project: 10 points
For Image Applications Part:
You can achieve points from participation, exercises, participation and exam/final project:
- 20% points from participation
- 50% points from practical exercises in class room and home work
- 30% points from the final project work/exam
It is mandatory to get at least 50% points in each of the above parts (NLP and Image Applications) to pass this course.
Hylätty (0)
Under 50
Arviointikriteerit, tyydyttävä (1-2)
50 points -> 1
60 points -> 2
Arviointikriteerit, hyvä (3-4)
70 points -> 3
80 points -> 4
Arviointikriteerit, kiitettävä (5)
90 points -> 5