Applications of AI (5 op)
Toteutuksen tunnus: TT00CN77-3001
Toteutuksen perustiedot
Ilmoittautumisaika
04.12.2024 - 13.01.2025
Ajoitus
13.01.2025 - 30.04.2025
Opintopistemäärä
5 op
TKI-osuus
2 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Englanti
Paikat
0 - 40
Koulutus
- Tieto- ja viestintätekniikan koulutus
- Tietojenkäsittelyn koulutus
Opettaja
- Golnaz Sahebi
- Matti Kuikka
- Mojtaba Jafaritadi
- Pertti Ranttila
- Ali Khan
- Jussi Salmi
Ryhmät
-
PTIETS22deaiPTIETS22 Datatekniikka ja Tekoäly
-
PTIVIS22IData Engineering and AI
- 16.01.2025 08:00 - 10:00, Course Introduction, Applications of AI TT00CN77-3001
- 23.01.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 30.01.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 06.02.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 13.02.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 27.02.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 06.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 13.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 20.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 27.03.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 03.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 10.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 17.04.2025 08:00 - 11:00, Theory & Practices, Applications of AI TT00CN77-3001
- 24.04.2025 08:00 - 10:00, Finals or exam, Applications of AI TT00CN77-3001
Tavoitteet
After completing the course, the student can:
- describe what kind of AI applications are available
- describe how AI based applications can be developed
- develop applications using AI
Sisältö
Actual content is decided during the course implementation phase.
The contents vary every year.
Oppimateriaalit
Material available via the learning environment (ITS).
Opetusmenetelmät
The course includes about 12 theory sessions and personal practice tasks (3h),
There will be also quest lecturers (from companies or RDI people)
Tenttien ajankohdat ja uusintamahdollisuudet
No exam or in week 17.
Pedagogiset toimintatavat ja kestävä kehitys
This learning method combines theoretical knowledge with practical applications and real-world examples.
Weekly assignments based on the topics covered.
Around half of the exercises are done during the contact hours.
Additionally, exercises for home work.
Additionally:
- Mid-term project: Develop a simple AI application (everyone have own project)
- Final project/exam: Comprehensive AI application using multiple techniques learned in the course (group work)
Toteutuksen valinnaiset suoritustavat
None.
Opiskelijan ajankäyttö ja kuormitus
Contact hours:
- Week 3: Course Introduction 2h
- Weeks 4 - 16: Theory & practice (3h/week): 12 x 3h = 36h
- Week 17: Exam/Finals 2h
Total contact hours: 40 hours
Independent study and homework: about 90 h
Total: approximately: 130 hours
Sisällön jaksotus
Weekly time schedule plan
3. Introduction to Course and AI-based applications & Examples of AI-Based Applications in various industries
4. Steps to develop AI Applications with a help of tools and frameworks
5. Data-Driven AI and techniques for data-driven AI development
6. Use of Open Data and building Decision Trees with it
7. Handling and processing tabular data and applications of tabular data
9. Generative AI and applications of generative AI (e.g., art, music, text generation)
10. Language Models (e.g., GPT, BERT) and NLP applications NLP
11. Computer Vison and it's real-world applications (e.g., facial recognition, autonomous vehicles)
12. Object Recognition and techniques & applications for object recognition
13. Synthetic Data and use cases of it.
14. Optimization in AI and applications of optimization in AI models
15. IBM Watson and practical applications with it (e.g. image recognition, NLP)
16. Building and training models using PyTorch & TensorFlow
17. Exam/Presentation of final project results
+ projects to build an AI application during the course (one alone and another in team)
Viestintäkanava ja lisätietoja
ItsLearning
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
You can achieve points from participation, exercises, participation and exam/final project:
- 20% points from participation
- 50% points from practical exercises in class room and home work
- 30% points from the final project work/exam