Tietorakenteet ja algoritmit (5 op)
Toteutuksen tunnus: 5051128-3011
Toteutuksen perustiedot
Ilmoittautumisaika
01.12.2024 - 13.01.2025
Ajoitus
13.01.2025 - 30.04.2025
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Suomi
- Englanti
Paikat
0 - 70
Koulutus
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Noora Maritta Nieminen
Ryhmät
-
PTIVIS23PGame and Interactive Technologies
Tavoitteet
Opintojakson suoritettuaan opiskelija osaa:
- selittää tavallisimpia tietorakenteita
- hyödyntää keskeisiä tietorakenteita sekä niiden käyttöön liittyviä algoritmeja
- arvioida algoritmien suoritustehokkuutta.
Sisältö
- listat, pinot, jonot, puut, verkot ja hajautustaulut
- algoritmien analysointi
- algoritmien suunnittelu
- järjestämistekniikat
- hakualgoritmit
Oppimateriaalit
Lecture and practice session material in ItsLearning, e.g. PowerPoint presentations, Jupyter notebook / Python files, etc.
All material is provided in English
Opetusmenetelmät
Attending to lectures: teacher will provide both theoretical background and practical examples on a dedicated topic
Attending practice sessions: the theory is put into action in practice - we will see solutions to previous exercises + practice new topics
Individual work: Completing the assignments individually after face-to-face sessions
Tenttien ajankohdat ja uusintamahdollisuudet
No exam, retake not possible after the publication of the final assessment/course grade
Pedagogiset toimintatavat ja kestävä kehitys
The course has 14 two-hour contact sessions where teacher present theory and examples, and 12 two-hour practice sessions where students work with practical tasks.
Electronic materials are used in the course.
Toteutuksen valinnaiset suoritustavat
Ask teacher, if there is an ongoing suitable online course (FiTech / Coursera or equivalent).
CampusOnline courses ARE NOT accepted!
Opiskelijan ajankäyttö ja kuormitus
Lectures 2h / week x 14 = 28h
Practice sessions 2h x 12 = 24h
Individual work outside school: reading, studying, preparing the weekly programming practice tasks: 80h
Total: approx. 80h
Sisällön jaksotus
Understanding data structures and algorithmic efficiency / complexity are essential in many ways. During this course, the student will gain both theoretical and practical understanding on these topics. Students will learn to use pseudocode / flowcharts to describe algorithms and analyze their complexity (time and space, both experimental and theoretical). We will gain a comprehensive insight to elementary data structures and their algorithms.
Practical understanding is gained through coding exercises. We will use Python as our main coding language.
January– April 2025
January: Algorithmic Thinking and Analysis
• pseudocode, flowcharts
• efficiency and algorithmic complexity
February: Basic Data Structures
• Arrays, Linked List, Stack, Queue
March: Advanced Data Structures
• Hash table, Trees, Graphs
April: Sorting Algorithms, Search Algorithms
• Bubble, Selection, Insertion, Merge and Quick Sort
Viestintäkanava ja lisätietoja
ItsLearning
Email
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
The grade will be based on the following criteria:
- practical work (at the end of the course)
- homework activity (continuous, weekly assignments)
- attendance to lectures and practice sessions
You can achieve 80 points from practical exercises in class room and home work exercises.
Around half of the exercises are done during the contact hours.
Demonstrations of exercises during the contact session is mandatory without demonstration you will lose 50% of your marks.
Additionally, there is a group project of 20 points, passing group project is mandatory to pass the course.
Lastly, to pass the course the student need to get at least 40 marks in the exercises and at least 10 marks in the project.
Hylätty (0)
Student fails to meet most of the general objectives of the course in a satisfactory level.
Arviointikriteerit, tyydyttävä (1-2)
• has an elementary understanding on the performance of algorithms and in simple cases is able to apply some methods of analysis covered during the course.
• is familiar with some major algorithms and data structures covered in the course.
• has a basic understanding on how to apply the algorithmic design parameters covered in the course.
• has an elementary understanding on data representation.
• demonstrates some understanding on how to decompose programming problems in a purposeful way.
• can use most elementary data structures appropriately
Arviointikriteerit, hyvä (3-4)
• can analyze the performance of simple algorithms and is able to apply some of the methods of analysis covered during the course.
• is familiar with most of the major algorithms and data structures covered in the course.
• has an understanding of the algorithmic design parameters covered in the course.
• has a good understanding on data representation.
• demonstrates ability to decompose programming problems in a somewhat purposeful way.
• can choose and use elementary data structures appropriately in most cases.
Arviointikriteerit, kiitettävä (5)
• can analyze the performance of algorithms and is able to apply all the methods of analysis covered during the course.
• is familiar with all the major algorithms and data structures covered in the course.
• is able to apply the algorithmic design parameters covered in the course.
• has a deep understanding on data representation.
• demonstrates ability to decompose programming problems in a purposeful way.
• can choose and use elementary data structures appropriately.
Esitietovaatimukset
Ohjelmoinnin perusteet tai vastaavat tiedot ja taidot