Siirry suoraan sisältöön

Insinöörimatematiikan perusteet (5op)

Toteutuksen tunnus: TE00CQ16-3033

Toteutuksen perustiedot


Ilmoittautumisaika
09.10.2025 - 25.01.2026
Ilmoittautuminen toteutukselle on käynnissä.
Ajoitus
12.01.2026 - 30.04.2026
Toteutus ei ole vielä alkanut.
Opintopistemäärä
5 op
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
suomi
Paikat
130 - 150
Koulutus
Tieto- ja viestintätekniikan koulutus
Opettajat
Juha Saarinen
Ryhmät
PTIVIS25A
PTIVIS25A
PTIVIS25B
PTIVIS25B
PTIVIS25C
PTIVIS25C
PTIVIS25D
PTIVIS25D
Opintojakso
TE00CQ16

Toteutukselle Insinöörimatematiikan perusteet TE00CQ16-3033 ei valitettavasti löytynyt varauksia. Varauksia ei ole mahdollisesti vielä julkaistu tai toteutus on itsenäisesti suoritettava.

Arviointiasteikko

H-5

Sisällön jaksotus

1. osa:
- trigonometria
- vektorit
- matriisit

2. osa:
- Lukujärjestelmät
- Kompleksiluvut
- Funktiot: polynomi, rationaali-, eksponentti- ja logaritmifunktiot
- 1. asteen yhtälö
- 2. asteen yhtälö
- yhtälöryhmät
- Epäyhtälö

Tavoitteet

Opintojakson suoritettuaan opiskelija
• osaa käsitellä tekniikan aloilla esiintyviä matemaattisia lausekkeita.
• ymmärtää yhtälönratkaisun periaatteet ja osaa ratkaista tekniikan aloille tyypillisiä yhtälöitä.
• ymmärtää vektorilaskennan periaatteet ja osaa soveltaa vektoreita tekniikan alan ongelmien mallintamiseen ja ratkaisemiseen.
• ymmärtää geometrian ja trigonometrian peruskäsitteet ja osaa soveltaa niitä ongelmaratkaisussa.
• ymmärtää funktion käsitteen ja tietää funktioiden perusominaisuuksia.
• osaa soveltaa funktioita tekniikan ongelmien mallintamiseen ja ratkaisemiseen.
• ymmärtää matriisilaskennan periaatteet
• osaa soveltaa yhtälöryhmiä tekniikan alan ongelmien ratkaisussa.
• tuntee matematiikan merkintätapoja ja osaa soveltaa niitä tekniikan aloilla.

Sisältö

• Lukujen esitystavat ja lukujoukot
• Peruslaskutoimitukset ja laskujärjestys
• Murtolausekkeet, potenssit, polynomilausekkeet ja rationaalilausekkeet
• Polynomifunktiot sekä I ja II asteen polynomiyhtälöt ja -epäyhtälöt
• Yhtälöryhmät
• Juuret ja juuriyhtälöt
• Eksponenttifunktiot ja -yhtälöt
• Logaritmifunktiot ja -yhtälöt
• Kulmat ja kulmayksiköt
• Suorakulmaisen kolmion trigonometria
• Trigonometriset funktiot yksikköympyrässä
• Trigonometriset yhtälöt
• Sinilause, kosinilause ja yleisen kolmion ratkaiseminen
• Vektorilaskennan peruskäsitteet ja tekniikan ongelmien mallintaminen vektorien avulla
• Vektorien pistetulo ja ristitulo
• Matriisilaskennan peruskäsitteet, determinantti ja käänteismatriisi
• Koulutuskohtaisia sisältöjä

Oppimateriaalit

Itslearning-sivulta löytyvät:
Luentomuistiinpanot
Kurssilla on käytössä kirja, josta on valtaosa tehtävistä: Insinöörin Matematiikka, Tuomenlehto, Holmlund, Huuskonen, Makkonen, Surakka.

Opetusmenetelmät

Luennot
Laskuharjoitukset
Kokeet

Tenttien ajankohdat ja uusintamahdollisuudet

Kurssilla pidetään kaksi osakoetta. Ensimmäinen osakoe on noin puolivälissä kurssia ja toinen kurssin lopussa. Kokeiden tarkat päivämäärät ilmoitetaan kurssin Itslearning alustalla.

Hylätyn kurssisuorituksen voi uusia uusintakokeella, joka pidetään toukokuussa.

Toteutuksen valinnaiset suoritustavat

Kurssilla ei ole vaihtoehtoisia suoritustapoja.

Opiskelijan ajankäyttö ja kuormitus

26*2h luennot
13*2h laskuharjoitukset
2*2h kokeet
loppu opiskelijan itsenäistä opiskelua

Arviointimenetelmät ja arvioinnin perusteet

Osakokeiden yhteispistemäärästä täytyy saada 40% pisteistä päästäkseen kurssista läpi. Laskuharjoituksista saatavat lisäpisteet voivat parantavat arvosanaa. Tarkempi arvosanataulukko julkaistaan Itslearning alustalla.

Opintojaksolla saa ja suosittellaan käyttämään tekoälyä oppimisen tukena.

Lähiopetuksen tunneilla on läsnäolovelvollisuus.

Hylätty (0)

Hylätyn arvosanan kurssista saa:
- Jos ei osallistu vähintään 50% opetuskerroista
- jos ei saavuta kurssinosakokeista minimi pistemäärää, joka on 40% osakokeiden yhteispistemäärästä.

Arviointikriteerit, tyydyttävä (1-2)

Arvosana määräytyy osakokeiden pistemäärän mukaisesti. Laskuharjoituksista saatavat lisäpisteet voivat parantavat arvosanaa.

Arviointikriteerit, hyvä (3-4)

Arvosana määräytyy osakokeiden pistemäärän mukaisesti. Laskuharjoituksista saatavat lisäpisteet voivat parantavat arvosanaa.

Arviointikriteerit, kiitettävä (5)

Arvosana määräytyy osakokeiden pistemäärän mukaisesti. Laskuharjoituksista saatavat lisäpisteet voivat parantavat arvosanaa.

Esitietovaatimukset

Opintojakso "Matemaattisen aineiden perustaidot" tai vastaavat tiedot ja taidot.

Siirry alkuun