Data-analytiikka ja KoneoppiminenLaajuus (5 op)
Tunnus: 3011633
Laajuus
5 op
Osaamistavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Ilmoittautumisaika
01.12.2023 - 17.01.2024
Ajoitus
08.01.2024 - 30.04.2024
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Suomi
- Englanti
Paikat
10 - 35
Koulutus
- Tietojenkäsittelyn koulutus
Opettaja
- Golnaz Sahebi
- Matti Kuikka
Vastuuopettaja
Matti Kuikka
Ryhmät
-
PTIETS22swisPTIETS22 Ohjelmistojen kehittäminen ja tietojärjestelmät
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Pääosin oheisen kirjan mukaisesti (kappaleista 1 -10)
[Aurélien Géron] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, Publisher : O'Reilly Media; 2022, 3rd Edition
Lisäksi: Opettajan laatima materiaali, verkkomateriaali sekä oppimisympäristön tehtävät.
Opetusmenetelmät
Lähiopetus, tietokoneavusteinen opetus, tehtäväperustaisuus
Tenttien ajankohdat ja uusintamahdollisuudet
-
Pedagogiset toimintatavat ja kestävä kehitys
Opintojakso sisältää noin 12 ohjattua työskentely- ja teoriakertaa, 9 henkilökohtaista harjoitustehtävää ja ryhmätyön.
Ryhmätyö tehdään 3-4 hengen ryhmissä.
Opintojaksolla käytetään vain sähköisiä materiaaleja. Lisäksi seurantaa järjestetään myös verkossa, jotta vähennetään liikkumisesta johtuvaa hiilijalanjälkeä.
Opiskelijan ajankäyttö ja kuormitus
Kontaktitunnit:
- Kurssin aloitus: 2h
- Viikot 3 - 5: Teoria & käytäntö (3h/viikko): 5 x 3h = 15h
- Viikot 9 - 15: Teoria & käytäntö (3h/viikko): 7 x 3h = 21h
- Viikko 16: Projektitöiden esitykset: 3h
- Lisäksi viikoilla 4 - 15 noin 10 tuki- ja kyselytuntia: 10 x 1h = 10h
Kontaktitunnit yhteensä: noin 51h
Itsenäinen opiskelu ja kotitehtävät: noin 90 h
Yhteensä: noin 130h
Sisällön jaksotus
Viikko 2:
- Machine learning landscape (Johdanto koneppimiseen)
Viikot 3 - 7:
- End-to-end machine learning process (Koneoppimisprosessi)
Viikot 9-15:
- Ryhmätyön esittely
- Classification (Luokittelu)
- Training linear models (Lineaariset mallit)
- Decision trees (Päätöspuut)
- Unsupervised learning (Ohjaamaton oppiminen)
- Neural networks (Johdanto neuroverkkoihin)
Viikko 16: Projektitöiden esitys
Viestintäkanava ja lisätietoja
Kurssin materiaalit ja tehtävien ovat ITS.ssä.
Harjoitustehtävät suoritetaan pääosin Jupyter Notebookilla.
Kurssin tiedotus ITS:n kautta, mutta myös kurssin Teams-kanavan kautta.
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
Kurssi arvostellaan asteikolla 0-5.
Saat pisteitä kontakitunnille tehdyistä harjoituksista ja kotitehtävistä, jotka vaikuttavat arvosteluun 3 yksikön verran.
Noin puolet harjoituksista tehdään kontaktitunneilla.
Projektityö vaikuttaa myös arvosteluun 2 yksikön verran. Projekityöstä saa ITS:iin arvion 0 - 5, johon vaikuttaa sekä opettajan arvio että muun projektitiimin antama vertaisarvio.
Kurssia voi läpäistä vain tekemällä sekä harjoitustehtäviä että osallistumalla projektityöhön.
Hylätty (0)
Opiskelija EI osallistu projektityöhön tai saa siitä arvosanan 0 TAI ei saanut vähintään 40% kurssin harjoitusten pisteistä.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija sai 40-59% kurssin harjoitusten tehtävien pisteistä JA sai projektityöstä arvosanan 1 - 3.
Arviointikriteerit, hyvä (3-4)
Opiskelija sai 60-84% kurssin harjoitusten tehtävien pisteistä JA sai projektityöstä arvosanan 3 - 4.
Arviointikriteerit, kiitettävä (5)
Opiskelija sai vähintään 85% kurssin harjoitusten tehtävien pisteistä JA sai projektityöstä arvosanan 5.
Ilmoittautumisaika
30.11.2022 - 19.01.2023
Ajoitus
09.01.2023 - 28.04.2023
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Suomi
Paikat
20 - 35
Opettaja
- Matti Kuikka
- Tuomo Helo
Ryhmät
-
PTIETS21swisPTIETS21 Ohjelmistojen kehittäminen ja Tietojärjestelmät
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Kurssikirja:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)
tai saman kirjan 3. painos (November 2022)
Luemme valikoiden kirjan lukuja 1-10. Niissä on noin 300 sivua, mutta osasta hypätään yli.
Kurssikirja on luettavissa sähköisessä muodossa oppilaitoksemme eBook Central -tietokannasta.
Kurssilla on myös luettavaa, joka ilmoitetaan kurssin aikana
Tenttien ajankohdat ja uusintamahdollisuudet
Ei tenttiä.
Sisällön jaksotus
Johdatus koneoppimiseen
Koneoppimisprojektin vaiheet:
- tehtävään perehtyminen
- datan tarkastelu
- datan jalostaminen
- mallin valinta ja arviointi
- mallin ottaminen tuotantoon
Numeerinen ennustaminen
Luokittelu
Klusterianalyysi
*
Etenemme pääpiirteissään kurssikirjan lukujen mukaisesti.
Ryhmätyö
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvostellaan skaalalla 0-5.
*
Saadakseen hyväksytyn suorituksen opiskelijan on saatava hyväksyttävä merkintä sekä 1) henkilökohtaisista harjoitustehtävistä että 2) ryhmätyöstä.
*
Jokaisesta harjoitustehtävästä voi saada vähintään 10 pistettä. Kaikista 10 harjoitustehtävästä voi saada siis yhteensä maksimissaan 100 pistettä.
Henkilökohtaiset harjoitustehtävät: 25 pistettä -> arvosana 0,5; 38 -> 1,0; 50 -> 1,5; 63 -> 2,0; 75 - 2,5; 88 -> 3,0. Tehtävät tarkastetaan demoissa. Demokerroilla on oltava läsnä.
Osallistuminen ryhmätyöhön: 0,0 - 2,0.
*
(Molemmissa tapauksissa 0,5 on ensimmäinen hyväksytty arvosana)
Ilmoittautumisaika
30.11.2022 - 19.01.2023
Ajoitus
09.01.2023 - 28.04.2023
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Englanti
Paikat
10 - 35
Opettaja
- Golnaz Sahebi
- Matti Kuikka
Ryhmät
-
VAVA2223Ammattikorkeakoulun yhteiset vapaasti valittavat
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Course book:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)
We read chapters 1-10 of the book of menus. They have about 300 pages, but some are skipped over.
The course book can be read in electronic form from our institution's eBook Central database.
The course also has reading material, which will be announced during the course.
Pedagogiset toimintatavat ja kestävä kehitys
The course includes approximately 12 guided working and theory sessions, 10 personal practice tasks and group work.
*
Group work is done in groups of 3-4 people outside of guidance sessions. The group sets aside 15 minutes outside of guidance sessions to present the group work.
Sisällön jaksotus
Introduction to machine learning:
- data exploration
- data processing and preparation
- model training, selection, and evaluation
- taking the model into production
- supervised learning
- unsupervised learning
- visualization
We proceed in general according to the chapters in the course book.
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
The course is graded on a scale of 0-5.
*
In order to receive an approved performance, the student must receive an acceptable mark for both 1) personal practice tasks and 2) group work.
*
You can get at least 10 points for each practice task. You can therefore get a maximum of 100 points from all 10 practice tasks.
Personal practice tasks: 25 points -> grade 0.5; 38 -> 1.0; 50 -> 1.5; 63 -> 2.0; 75 - 2.5; 88 -> 3.0. The tasks are checked in the demos. Must be present at the demo sessions.
Participation in group work: 0.0 - 2.0.
*
(In both cases, 0.5 is the first accepted grade)
Ilmoittautumisaika
11.12.2021 - 21.01.2022
Ajoitus
10.01.2022 - 25.04.2022
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Tekniikka ja liiketoiminta
Toimipiste
Kupittaan kampus
Opetuskielet
- Suomi
Paikat
0 - 50
Opettaja
- Matti Kuikka
- Golnaz Sahebi
- Tuomo Helo
Ryhmät
-
PTIETS20swisPTIETS20 Ohjelmistojen kehittäminen ja Tietoturva
Tavoitteet
Kurssin suoritettuaan opiskelija:
- Osaa kertoa, mitä data-analyysi ja koneoppiminen ovat
- Osaa kertoa miksi data-analyysiä ja koneoppimista käytetään
- Osaa analysoida ja visualisoida dataa
- Osaa kuvata koneoppimisprosessin
- Osaa käyttää soveltuvia työkaluja data-analyysiin ja koneoppimiseen
Sisältö
Johdatus data-analyysiin ja koneoppimiseen
Data-analyysin prosessi ja menetelmät
Koneoppimisen prosessi ja menetelmät
Käytännön harjoittelu
Oppimateriaalit
Kurssikirja:
Aurélien Géron.
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
2nd Edition.
Publisher : O'Reilly Media; 2nd edition
(October 15, 2019)
Luemme valikoiden kirjan lukuja 1-10. Niissä on noin 300 sivua, mutta osasta hypätään yli.
Kurssikirja on luettavissa sähköisessä muodossa oppilaitoksemme eBook Central -tietokannasta.
Kurssilla on myös luettavaa, joka ilmoitetaan kurssin aikana.
Tenttien ajankohdat ja uusintamahdollisuudet
Ei tenttiä.
Pedagogiset toimintatavat ja kestävä kehitys
Opintojakso sisältää noin 12 ohjattua työskentely- ja teoriakertaa, 10 henkilökohtaista harjoitustehtävää ja ryhmätyön.
*
Ryhmätyö tehdään 3-4 hengen ryhmissä ohjauskertojen ulkopuolella. Ryhmätyön esittämiseen ryhmä varaa 15 minuutin ajan ohjauskertojen ulkopuolelta.
Sisällön jaksotus
Johdatus koneoppimiseen
Koneoppimisprojektin vaiheet:
- tehtävään perehtyminen
- datan tarkastelu
- datan jalostaminen
- mallin valinta ja arviointi
- mallin ottaminen tuotantoon
Numeerinen ennustaminen
Luokittelu
Klusterianalyysi
*
Etenemme pääpiirteissään kurssikirjan lukujen mukaisesti.
Ryhmätyö
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
Opintojakso arvostellaan skaalalla 0-5.
*
Saadakseen hyväksytyn suorituksen opiskelijan on saatava hyväksyttävä merkintä sekä 1) henkilökohtaisista harjoitustehtävistä että 2) ryhmätyöstä.
*
Jokaisesta harjoitustehtävästä voi saada vähintään 10 pistettä. Kaikista 10 harjoitustehtävästä voi saada siis yhteensä maksimissaan 100 pistettä.
Henkilökohtaiset harjoitustehtävät: 25 pistettä -> arvosana 0,5; 38 -> 1,0; 50 -> 1,5; 63 -> 2,0; 75 - 2,5; 88 -> 3,0. Tehtävät tarkastetaan demoissa. Demokerroilla on oltava läsnä.
Osallistuminen ryhmätyöhön: 0,0 - 2,0.
*
(Molemmissa tapauksissa 0,5 on ensimmäinen hyväksytty arvosana)