Siirry suoraan sisältöön

AI projectLaajuus (5 op)

Tunnus: MS00CN48

Laajuus

5 op

Osaamistavoitteet

After completing the course, the students can
- work in the AI project
- describe and understand how AI projects are implemented

Sisältö

Practical project related to AI

Ilmoittautumisaika

02.12.2024 - 31.12.2024

Ajoitus

01.01.2025 - 31.07.2025

Opintopistemäärä

5 op

Toteutustapa

Lähiopetus

Toimipiste

Kupittaan kampus

Opetuskielet
  • Suomi
  • Englanti
Paikat

10 - 25

Koulutus
  • Insinööri (ylempi AMK), Data Engineering and AI
  • Tradenomi (ylempi AMK), Data Engineering and AI
Opettaja
  • Golnaz Sahebi
  • Pertti Ranttila
Ryhmät
  • YDATIS24
    Insinööri (ylempi AMK), Data Engineering and AI
  • YDATTS24
    Tradenomi (ylempi AMK), Data Engineering and AI

Tavoitteet

After completing the course, the students can
- work in the AI project
- describe and understand how AI projects are implemented

Sisältö

Practical project related to AI

Oppimateriaalit

See the English side.

Tenttien ajankohdat ja uusintamahdollisuudet

See the English side.

Opiskelijan ajankäyttö ja kuormitus

See the English side.

Sisällön jaksotus

See the English side.

Viestintäkanava ja lisätietoja

See the English side.

Arviointiasteikko

Hyväksytty/Hylätty

Ilmoittautumisaika

02.12.2023 - 16.01.2024

Ajoitus

26.02.2024 - 30.04.2024

Opintopistemäärä

5 op

Toteutustapa

Lähiopetus

Yksikkö

Tekniikka ja liiketoiminta

Opetuskielet
  • Suomi
  • Englanti
Koulutus
  • Insinööri (ylempi AMK), Data Engineering and AI
  • Tradenomi (ylempi AMK), Data Engineering and AI
Opettaja
  • Golnaz Sahebi
  • Pertti Ranttila
Ryhmät
  • YDATIS23
    Insinööri (ylempi AMK), Data Engineering and AI
  • YDATTS23
    Tradenomi (ylempi AMK), Data Engineering and AI

Tavoitteet

After completing the course, the students can
- work in the AI project
- describe and understand how AI projects are implemented

Sisältö

Practical project related to AI

Oppimateriaalit

The course materials will be announced later during the course.

Tenttien ajankohdat ja uusintamahdollisuudet

No Exam

Opiskelijan ajankäyttö ja kuormitus

Contact hours:
- 4 times 4h theory and practice: 4 x 4h = 16 hours

Final project: approximately 114 hours

Total: approximately: 130 hours

Sisällön jaksotus

A deep learning-focused, project-based course that empowers master's students to explore and develop AI projects, fostering their ability to conceive, implement, and optimize intelligent solutions.

Session 1: AI Project Lifecycle and Data Selection
Session 2: Data Preprocessing and Model Selection
Session 3: Presenting First Results and Discussion
Session 4: Algorithm Optimization and Tuning

Viestintäkanava ja lisätietoja

This course is project-based, requiring students to possess knowledge in machine learning and deep learning, specifically in image recognition and Sequential models.
Consequently, it is advisable to enroll in the 'Components and Applications of Artificial Intelligence' course first. In that course, students learn how to employ deep neural networks for image recognition (using CNN) and using RNN for sequential models. This foundational knowledge will better prepare students for the project-based nature of this course.

Arviointiasteikko

Hyväksytty/Hylätty