Engineering Precalculus (5 cr)
Code: TE00CQ16-3032
General information
- Enrollment
- 01.06.2025 - 01.09.2025
- Registration for the implementation has begun.
- Timing
- 01.09.2025 - 19.12.2025
- The implementation has not yet started.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- Engineering
- Teaching languages
- Finnish
- Seats
- 90 - 110
- Degree programmes
- Degree Programme in Mechanical Engineering
Realization has 49 reservations. Total duration of reservations is 100 h 0 min.
Time | Topic | Location |
---|---|---|
Tue 02.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Thu 04.09.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Fri 05.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_2001
Elias muunto byod
|
Fri 05.09.2025 time 12:00 - 14:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_2001
Elias muunto byod
|
Mon 08.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_2001
Elias muunto byod
|
Tue 09.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Thu 11.09.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Mon 15.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_2001
Elias muunto byod
|
Mon 15.09.2025 time 12:00 - 14:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_2001
Elias muunto byod
|
Thu 18.09.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Tue 23.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Thu 25.09.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_C1035_Delta
DELTA
|
Fri 26.09.2025 time 08:00 - 10:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1002
Moriaberg Esitystila byod
|
Fri 26.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1002
Moriaberg Esitystila byod
|
Mon 29.09.2025 time 12:00 - 14:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_2001
Elias muunto byod
|
Tue 30.09.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Thu 02.10.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Mon 06.10.2025 time 08:00 - 10:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Mon 06.10.2025 time 12:00 - 14:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Thu 09.10.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_3001
Kaarle muunto byod
|
Tue 21.10.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Wed 22.10.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Thu 23.10.2025 time 15:00 - 18:00 (3 h 0 min) |
KOE, Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1047_Alpha
ALPHA
|
Tue 28.10.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
Teams
|
Thu 30.10.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
Teams
|
Fri 31.10.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Mon 03.11.2025 time 08:00 - 10:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Mon 03.11.2025 time 12:00 - 14:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Fri 07.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Tue 11.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Thu 13.11.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Fri 14.11.2025 time 08:00 - 10:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Fri 14.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Tue 18.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Wed 19.11.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Fri 21.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Mon 24.11.2025 time 12:00 - 14:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Tue 25.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Fri 28.11.2025 time 08:00 - 10:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Fri 28.11.2025 time 10:00 - 12:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Mon 01.12.2025 time 12:00 - 14:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Tue 02.12.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_C1035_Delta
DELTA
|
Thu 04.12.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Mon 08.12.2025 time 08:00 - 10:00 (2 h 0 min) |
Laskutunti B, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Mon 08.12.2025 time 12:00 - 14:00 (2 h 0 min) |
Laskutunti A, Insinöörimatematiikan perusteet TE00CQ16-3032 |
EDU_1001
Dromberg Esitystila byod
|
Thu 11.12.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Tue 16.12.2025 time 10:00 - 12:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1032_Beta
BETA
|
Wed 17.12.2025 time 08:00 - 10:00 (2 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032, Lisäohjaus |
EDU_3001
Kaarle muunto byod
|
Thu 18.12.2025 time 08:00 - 11:00 (3 h 0 min) |
Insinöörimatematiikan perusteet TE00CQ16-3032 |
ICT_B1047_Alpha
ALPHA
|
Evaluation scale
H-5
Content scheduling
Kurssilla vuorottelevat auditoriossa pidettävä teoriaopetus, A- ja B-ryhmälle erikseen järjestettävät laskutunnit sekä vapaaehtoinen lisätuki.
Ensimmäinen välikoe Ke 23.10. klo 15-18 auditorio Alphassa.
Toinen välikoe To 18.12. klo 8-11 auditorio Alphassa.
Kurssin sisällöt:
- Ensimmäisen ja toisen asteen polynomiyhtälöt sekä -epäyhtälöt
- Yhtälöryhmät
- Geometria ja trigonometria
- Vektorit
- Matriisit
- Eksponenttifunkio, logaritmifunktio ja niiden yhtälöt
- Trigonometriset yhtälöt
Objective
After completing the course, the student
• can handle mathematical expressions and formulas within the engineering framework.
• understands the principles of solving equations and can solve equations encountered within technical applications.
• understands the basics of vector algebra and can apply vectors for modelling and solving technical problems.
• understands the basics concepts of geometry and trigonometry, and can apply them in modelling and problem solving.
• understands the concept of function and knows basic properties of functions.
• can apply functions for modelling and solving technical problems.
• understands the basic concepts of matrix algebra.
• can apply simultaneous equations for modelling and solving technical problems.
• can apply correct mathematical notations within the engineering framework.
Content
• Real numbers
• Basic arithmetic operations and the order of operations
• Algebraic expressions
• First and second order of polynomial equations and inequalities
• Simultaneous linear equations
• Radical functions and equations
• Exponential and logarithmic functions and equations
• Angles and angular units
• Right triangle and trigonometry
• Trigonometric functions and the unit circle
• Trigonometric equations
• The sine and cosine rules
• Basic concepts of vector algebra and modelling with vectors
• Scalar product and cross product of two vectors
• Basics of matrix algebra, determinant, inverse of a square matrix
• Field-specific content
Materials
Itslearning-oppimisymäristössä oleva ja sinne linkitetty materiaali.
Teaching methods
Kurssin opetus perustuu lähiopetukseen ja laskuharjoitustehtäviin.
Läsnäolovelvoitteen perusteet:
- Henkilökohtaisen palautteen mahdollistaminen
- Tehtävien tekeminen pienryhmissä
- Opintoihin kiinnittymisen vahvistaminen
- Opiskelutaitojen vahvistaminen
Exam schedules
Ensimmäinen välikoe Ke 23.10. klo 15-18 auditorio Alphassa.
Toinen välikoe To 18.12. klo 8-11 auditorio Alphassa.
Uusintakokeet pidetään tammi- ja helmikuun aikana.
Uusinnassa uusitaan jompi kumpi välikokeista.
Pedagogic approaches and sustainable development
Opetuskerroilla annetaan teoriaopetusta ja käydään läpi esimerkkejä, mutta pääpaino oppimisessa on opiskelijan omassa osallistumisessa sekä laskuharjoitustehtävien tekemisessä.
Matemaattiset aineet kehittävät työkaluja, joilla tarkastella muun muassa kestävään kehitykseen liittyviä luonnontieteellisiä kysymyksiä.
Student workload
5 op = 135 tuntia opiskelijan työtä
17*2 h = 34 h teoriaopetusta
8*2 h = 16 h laskutunteja
12*2 h = 24 h lisätukitunteja
2*3 h = 6 h välikokeet
1*1 h = 1 h kokeenpalautuskerrat
54 h itsenäistä opiskelua sisältäen laskuharjoitusten tekemisen, vertaisarvioinnin ja välikokeisiin valmistautumisen.
Evaluation methods and criteria
Kurssipisteet (max 42 p) muodostuvat seuraavasti:
Minitehtävät 0-3p (kertyy vasta minimirajan 50 % ylityttyä). Opettaja arvioi nämä asteikolla 0-2. Täydet hyvitykset saa, kun on kerännyt 30/34 pistettä.
Laskuharjoitustehtävät 0-7p (kertyy vasta minimirajan 33 % ylityttyä). Pisteiden saamiseksi täytyy tehdä itsearvio sekä vertaisarvioida muiden opiskelijoiden palautuksia anonyymisti. Täydet pisteet saa, kun on tehnyt noin 90 % kurssin laskuharjoitustehtävistä.
ja lisäksi
Välikoe 1: 0-16 p
Välikoe 2: 0-16 p
Kurssin hyväksyttyyn läpäisemiseen vaaditaan välikokeista molemmista vähintään 5 pistettä sekä opiskelijan on oltava läsnä vähintään 50 % opetuskerroista (teoriaopetus sekä laskutunnit), 50 % palautusta minitehtävistä ja vähintään 33 % palautusta kurssin laskuharjoitustehtävistä ajallaan. Tämän jälkeen arvosana muotoutuu seuraavasti:
Arvosana 1: 16 kurssipistettä
Arvosana 2: 21 kurssipistettä
Arvosana 3: 26 kurssipistettä
Arvosana 4: 31 kurssipistettä
Arvosana 5: 36 kurssipistettä
Failed (0)
Opiskelija ei pysty osoittamaan hallitsevansa suurinta osaa kurssin perustehtävistä.
Assessment criteria, satisfactory (1-2)
Opiskelija pystyy osoittamaan hallitsevansa suurimman osan kurssin perustehtävistä.
Assessment criteria, good (3-4)
Opiskelija hallitsee kurssin perustehtävät ja tämän lisäksi suoriutuu osasta vaativammista ja soveltavammista tehtävistä.
Assessment criteria, excellent (5)
Opiskelija kykenee osoittamaan hallitsevansa kurssin perustehtävät sekä suurimman osan kurssin soveltavista tehtävistä.
Qualifications
Introduction to mathematical sciences or corresponding skills.
Further information
Koko kurssia koskeva viestintä tapahtuu luennoilla ja ITS-learning-alustalla tai sähköpostitse. Yhteydenotot opettajaan sähköpostitse.