CalculusLaajuus (5 op)
Tunnus: TE00CS40
Laajuus
5 op
Osaamistavoitteet
Opiskelija ymmärtää differentiaali- ja integraalilaskennan perusasiat ja osaa
• tulkita derivaatan muutosnopeutena
• määrittää derivaatan graafisesti ja symbolisesti
• ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
• soveltaa derivaattaa funktion kulun tutkimiseen
• osaa integroida perusfunktioita
• ymmärtää määrätyn integraalin perusajatuksen ja osaa soveltaa sitä
• pystyy soveltamaan integraalilaskentaa käytännön sovelluksiin, esim. kertymän laskemiseen
• soveltaa differentiaaliyhtälöitä oman alansa ilmiöiden mallintamisessa ja ymmärtää differentiaaliyhtälöiden ratkaisemisen periaatteet
• käyttää oikein opintojakson sisältöön liittyviä matemaattisia termejä ja merkintöjä.
Sisältö
• Derivaatta
• Määräämätön ja määrätty integraali
• Differentiaali- ja integraalilaskennan sovelluksia
• Differentiaaliyhtälöistä
Ilmoittautumisaika
10.10.2024 - 26.01.2025
Ajoitus
13.01.2025 - 31.05.2025
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennusteollisuus
Toimipiste
Kupittaan kampus
Opetuskielet
- Suomi
Paikat
30 - 35
Koulutus
- Rakennus- ja yhdyskuntatekniikan koulutus, insinööri
Opettaja
- COS Opettaja
- Terhi Raittila
Ryhmät
-
PRAKIS24APRAKIS24A
Tavoitteet
Opiskelija ymmärtää differentiaali- ja integraalilaskennan perusasiat ja osaa
• tulkita derivaatan muutosnopeutena
• määrittää derivaatan graafisesti ja symbolisesti
• ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
• soveltaa derivaattaa funktion kulun tutkimiseen
• osaa integroida perusfunktioita
• ymmärtää määrätyn integraalin perusajatuksen ja osaa soveltaa sitä
• pystyy soveltamaan integraalilaskentaa käytännön sovelluksiin, esim. kertymän laskemiseen
• soveltaa differentiaaliyhtälöitä oman alansa ilmiöiden mallintamisessa ja ymmärtää differentiaaliyhtälöiden ratkaisemisen periaatteet
• käyttää oikein opintojakson sisältöön liittyviä matemaattisia termejä ja merkintöjä.
Sisältö
• Derivaatta
• Määräämätön ja määrätty integraali
• Differentiaali- ja integraalilaskennan sovelluksia
• Differentiaaliyhtälöistä
Oppimateriaalit
Oppikirja: Insinöörin matematiikka, Tuomenlehto, Holmlund, et. al., Edita
Opettajan jakama materiaali itsissä
Opetusmenetelmät
Luennoilla tutustutaan uuteen opittavaan aiheeseen
Laskuharjoituksissa aktiivinen laskeminen on keskeisessä osassa oppimista
Tenttien ajankohdat ja uusintamahdollisuudet
Välikoe 1 vko 11
Välikoe 2 vko 17
Ilmottaudu tenttiin ja uusintatenttiin vähintään viikkoa ennen tenttiä opettajalle sähköpostitse.
Kurssitentti:
Uusinta 1:
Uusinta 2:
Pedagogiset toimintatavat ja kestävä kehitys
Opiskelu perustuu tekemällä oppimiseen ja luentokertoihin osallistumiseen.
Kestävä kehitys huomioidaan kurssin tehtävien aihepiireissä. Vahva laskennallinen osaaminen antaa edellytyksiä ratkaista kestävän kehityksen ongelmia.
Opiskelijan ajankäyttö ja kuormitus
Yhteisluennot 22 h
Laskuharjoitukset 22 h
Ennakkotehtävät 11 h
Välikokeet/kokeet 4 h
Valmistautuminen kokeeseen 16 h
Itsenäinen työskentely, teoriaan tutustuminen ja laskeminen 60 h
Yhteensä 135h
Sisällön jaksotus
Differentiaali- ja Integraalilaskennan perusteet, kompleksiluvut ja lukujonot ja sarjat.
Luennot ja laskuharjoitukset viikoittain.
Välikokeet viikoilla 11 ja 17.
Viestintäkanava ja lisätietoja
Itsin viestit, sähköposti
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
Kurssin voi suorittaa joko kahdella välikokeella tai loppukokeella. Välikokeita ei voi uusia.
Kurssin arviointiin vaikuttaa kokeiden/tentin lisäksi kurssilla suoritettavat tehtävät ja niistä saadut lisäpisteet.
Kurssin hyväksyttyyn suorittamiseen vaaditaan kurssitehtävien palauttamista ja läsnäoloa laskuharjoituksissa.
Ilmoittautumisaika
10.10.2024 - 09.01.2025
Ajoitus
09.01.2025 - 15.04.2025
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Rakennusteollisuus
Opetuskielet
- Suomi
Paikat
25 - 35
Koulutus
- Rakennus- ja yhdyskuntatekniikan koulutus, insinööri
Opettaja
- COS Opettaja
- Arttu Karppinen
Ryhmät
-
MRAKIS24Rakentamisen tuotantojohtaminen, insinööri S24
Tavoitteet
Opiskelija ymmärtää differentiaali- ja integraalilaskennan perusasiat ja osaa
• tulkita derivaatan muutosnopeutena
• määrittää derivaatan graafisesti ja symbolisesti
• ratkaista sovellustehtäviä, joiden mallintaminen vaatii derivaatan käyttöä
• soveltaa derivaattaa funktion kulun tutkimiseen
• osaa integroida perusfunktioita
• ymmärtää määrätyn integraalin perusajatuksen ja osaa soveltaa sitä
• pystyy soveltamaan integraalilaskentaa käytännön sovelluksiin, esim. kertymän laskemiseen
• soveltaa differentiaaliyhtälöitä oman alansa ilmiöiden mallintamisessa ja ymmärtää differentiaaliyhtälöiden ratkaisemisen periaatteet
• käyttää oikein opintojakson sisältöön liittyviä matemaattisia termejä ja merkintöjä.
Sisältö
• Derivaatta
• Määräämätön ja määrätty integraali
• Differentiaali- ja integraalilaskennan sovelluksia
• Differentiaaliyhtälöistä
Oppimateriaalit
Kurssin materiaali jaetaan ITSlearning-sivustolla.
Opetusmenetelmät
Opetus perustuu etäopetukseen ja laskuharjoitustehtäviin.
Tenttien ajankohdat ja uusintamahdollisuudet
Kurssin välikokeet järjestetään lähikerroilla 13.2. sekä 15.4.
Monimuodon uusintakerroilla uusitaan jompikumpi tai molemmat välikokeista.
Pedagogiset toimintatavat ja kestävä kehitys
Opetusvideoilla annetaan teoriaopetusta ja käydään läpi esimerkkejä, mutta pääpaino oppimisessa on opiskelijan omassa työskentelyssä sekä laskuharjoitustehtävien tekemisessä.
Toteutuksen valinnaiset suoritustavat
-
Opiskelijan ajankäyttö ja kuormitus
5 op = 134 tuntia opiskelijan työtä
9*2h = 18h opetusvideoihin perehtyminen
12*1h = 12h Lisäohjausvideoihin perehtyminen
4*2h = 8h Teams-opetusta
4*2=8h lähiopetusta
2*2h kurssikoe = 4h
84h teoriasisällön opettelua, laskuharjoitustehtävien tekemistä, kokeeseen valmistautumista yms
Sisällön jaksotus
Kurssi suoritetään pääosin itseopiskeluna opetusvideoiden ja laskuharjoitustehtävien avulla. Näiden lisäksi on lähiopetusta ja Teams-tunteja.
Lähiopetusta järjestetään:
- Ti 14.1.
- Ti 13.2. (Välikoe 1)
- Ti 18.3.
- Ti 15.4. (Välikoe 2)
Teams-tunnit:
- To 9.1.
- Ti 21.1.
- Ti 25.2.
- Ti 25.3.
Jokaisella opetusviikolla (ensimmäistä ja toista lukuun ottamatta) maanantaisin julkaistaan opetusvideo, joka sisältää kyseisen viikon teorian ja esimerkkejä. Opiskelijoilla on perjantaihin asti aikaa kertoa opettajalle lisäohjaustoiveita, joiden pohjalta perjantaisin julkaistaan lisäohjausvideo. Laskuharjoitustehtävien palautus on aina opetusviikon sunnuntaihin klo 23.59 mennessä. Esimerkkiratkaisut julkaistaan palautusajan päätyttyä.
Lähikerroilla käydään läpi hankalaksi koettuja asioita ja tehdään mahdollisesti lisäharjoitustehtäviä. 18.3. lähikerralla keskitytään MatLabin käyttöön.
Teams-tunneilla opettaja vastaa opiskelijoiden esittämiin kysymyksiin.
Kurssin sisältö koostuu kahdesta osasta. Ensimmäinen osa käsittelee derivaattaa ja sen sovelluksia, kun taas jälkimmäinen osa käsittelee integraalia ja differentiaaliyhtälöitä. Tarkempi kurssin sisällön aikataulutus löytyy toteutuksen ITSlearning-sivusolta.
Viestintäkanava ja lisätietoja
Koko kurssia koskeva viestintä tapahtuu ITS-learning-alustalla tai sähköpostitse. Yhteydenotot opettajaan sähköpostitse.
Kurssilla vaaditaan vähintään funktiolaskin. Graafinen tai symbolinen laskin ei ole välttämätön, mutta monirivinen näyttö laskimessa voi olla avuksi. Kurssilla käytetään myös MatLab-ohjelmistoa.
Arviointiasteikko
H-5
Arviointimenetelmät ja arvioinnin perusteet
Kurssipisteet (max 42 p) muodostuvat seuraavasti:
Laskuharjoitustehtävistä kerätyt pisteet 0-10p.
Loppukoe 0-32p
Kurssin hyväksyttyyn läpäisemiseen vaaditaan
- Kurssikokeesta 10 pistettä
- Opiskelijan on palautettava vähintään 33 % kurssin laskuharjoitustehtävistä.
Tämän jälkeen arvosana muotoutuu seuraavan taulukon perusteella:
Arvosana 1: 16 kurssipistettä
Arvosana 2: 21 kurssipistettä
Arvosana 3: 26 kurssipistettä
Arvosana 4: 31 kurssipistettä
Arvosana 5: 36 kurssipistettä
Hylätty (0)
Kurssin minimivaatimuksia (10 pistettä kokeesta sekä palautettu 33 % kurssin laskuharjoitustehtävistä) ei ole täytetty.
Arviointikriteerit, tyydyttävä (1-2)
Kurssin minimivaatimukset (10 pistettä kokeesta sekä palautettu 33 % kurssin laskuharjoitustehtävistä) on täytetty ja kurssipisteitä ansaittu 16-25,75 p.
Arviointikriteerit, hyvä (3-4)
Kurssin minimivaatimukset (10 pistettä kokeesta sekä palautettu 33 % kurssin laskuharjoitustehtävistä) on täytetty ja kurssipisteitä ansaittu 26-35,75 p.
Arviointikriteerit, kiitettävä (5)
Kurssin minimivaatimukset (10 pistettä kokeesta sekä palautettu 33 % kurssin laskuharjoitustehtävistä) on täytetty ja kurssipisteitä ansaittu vähintään 36 p