Skip to main content

CalculusLaajuus (5 cr)

Code: TE00BX68

Credits

5 op

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Enrollment

10.10.2024 - 14.01.2025

Timing

14.01.2025 - 09.05.2025

Number of ECTS credits allocated

5 op

Virtual portion

4 op

Mode of delivery

20 % Contact teaching, 80 % Distance learning

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

0 - 60

Degree programmes
  • Degree Programme in Energy and Environmental Technology
Teachers
  • COS Opettaja
  • Hannele Kuusisto
Groups
  • PEYTES24B
    PEYTES24B

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Materials

Opintojakso seuraa oppikirjan "Insinöörin matematiikka, Tuomenlehto et.al." sisältöä.

Taulukkokirja/Kaavasto, jokin alla olevista:
- Matemaattisia kaavoja (Esko Valtanen / Pekka Laakkonen / Jaakko Viitala / Voitto Kettunen)
- Tekniikan kaavasto (Tammertekniikka)
- MAOL-taulukot (Otava)

Laskin: Casio FX-82CW ClassWiz Funktiolaskin (suositeltava) tai Funktiolaskin TI-30XA (riittävä perustason laskin). Myös graafinen/symbolinen laskin käy.

Lisäksi opintojaksolla käytetään muuta, verkossa ja lähiopetuskerroilla esitettävää materiaalia.
Opintojakson aikana hyödynnetään myös MATLAB-ohjelmaa, joten opiskelijalla tulisi olla käytettävissä henkilökohtainen tietokone.

Teaching methods

Opiskelijan oman tiedon konstruoimista tukevat menetelmät:
Lähiopetus, verkko-oppiminen, yhteistoiminnallinen oppiminen, itsenäinen työskentely.
Harjoitustehtävien suorittamisella on keskeinen rooli oppimisessa ja niiden osalta kannustetaan ryhmätyöskentelyyn.

Exam schedules

Välikokeet viikoilla 10 ja 19 tai kurssitentti viikolla 19.

International connections

Opiskelijan omaa aktiivisuutta ja tiedon konstruoimista tukevat oppimismenetelmät ja pedagogiset toimintatavat.

Opintojaksolla hankitut matemaattiset taidot tukevat opiskelijoita kestävän, eettisen ja vastuullisen toiminnan toteuttamisessa, sekä työelämässä että yksityiselämässä.
Osa opintojakson tehtävistä sisältää kestävään kehitykseen liittyvää laskentaa.

Opintojakson materiaali on pääsääntöisesti digitaalisesti tuotettua materiaalia, joka ei kuluta luonnonvaroja yhtä paljon kuin fyysinen materiaali.

Completion alternatives

Osaamisen näyttö kurssisisällön kattavalla tentillä

Student workload

- Teorialuennot ja laskuharjoitukset noin 60t
- Osaamista mittaavat välikokeet 2x2t (tai lopputentti 3t)
- Itsenäinen harjoittelu noin 70t (noin 4 tuntia/vk)

Content scheduling

Opintojakso toteutetaan yhteistoteutuksena ryhmän PSAHAUS24 kanssa viikoilla 3-19 tiistaisin; opintojaksoon liittyviä tukitunteja on myös maanantaisin ja torstaisin.
Pääsääntöisesti tuntien sisältö on seuraava:
- Tiistain tunnit ovat perehtymistä viikon aiheeseen (toteutus samanaikainen hybridi)
- Torstaisin on viikon tehtäviin liittyvä lähilaskupaja
- Maanantain tunnilla käydään läpi edellisen viikon tehtävissä epäselviksi jääneitä asioita ennen uuden aiheen aloitusta tiistaina (toteutus joko etänä tai samanaikaisena hybridinä).

Opintojaksolla käydään läpi differentiaali- ja integraalilaskennan sekä differentiaaliyhtälöiden perusteet. Lisäksi tutustutaan kompleksilukuihin ja raja-arvoihin. Tavoitteena on laajentaa insinööriopinnoissa ja työtehtävissä tarvittavan matemaattisen ajattelun pohjaa sekä kykyä lukea ja käyttää matematiikan kieltä ammatillisissa yhteyksissä. Lisäksi tavoitteena on tutustua MATLAB-ohjelmiston käyttöön matemaattisten ongelmien mallintamisessa ja ratkaisemisessa. Kurssilla pyritään käyttämään mahdollisimman paljon insinöörityöhön liittyviä esimerkkejä.

Tarkempi sisältö:
- kompleksiluvut ja niiden sovelluksia
- raja-arvot ja derivaatan määritelmä
- derivoinnin laskusäännöt
- differentiaalin käsite
- derivaatan sovelluksia
- määrätty integraali ja integraalifunktio
- integraalin laskusääntöjä
- integraalin sovelluksia
- differentiaaliyhtälöt ja niiden ratkaiseminen
- differentiaaliyhtälöiden sovelluksia

Further information

Opintojakson tärkeimmät ilmoitukset lähetetään sähköpostitse. Opiskelijoiden toivotaan olevan yhteydessä opettajaan ensisijaisesti sähköpostitse. Myös tuntien yhteydessä voi avoimesti kysyä ja keskustella asioista.
Ajankohtaisista asioista ilmoitetaan its-kurssin Yleiskatsaus-sivulla.

Evaluation scale

H-5

Assessment methods and criteria

Opintojakson kokonaisarvosana 0-5 muodostuu kerättyjen kurssipisteiden avulla (max 100 p). Kurssipisteitä on mahdollista kerätä
- Kahdesta osakokeesta (á max 50 p) tai kurssitentistä (max 100 p).
- Itsenäisistä laskuharjoituksista ViLLE:ssä (max 12 p, vastaa noin 1 kurssinumeroa).

Jos opiskelija suorittaa kurssin välikokeilla, kumpaankin kokeeseen on osallistuttava. Jos toisen välikokeen suoritus jää uupumaan, uusitaan kurssi tentillä.

Itsenäisesti Itsissä suoritettavat osaamistestit voivat vaikuttaa positiivisesti arvosanan raja-tapauksessa.

Assessment criteria, fail (0)

Opiskelija ei saavuta vähintään 40 % kurssipisteistä = 40p
Välikokeilla suorittava ei ole osallistunut molempiin välikokeisiin.

Assessment criteria, satisfactory (1-2)

Arvosana 1 edellyttää vähintään 40 % kurssipisteistä = 40p
Arvosana 2 edellyttää vähintään 52 % kurssipisteistä = 52p

Arvosanojen 1-2 tasoinen osaaminen tarkoittaa polynomifunktion derivointi- ja integrointisääntöjen hallintaa.

Assessment criteria, good (3-4)

Arvosana 3 edellyttää vähintään 64 % kurssipisteistä = 64p
Arvosana 4 edellyttää vähintään 76 % kurssipisteistä = 76p

Arvosanojen 3-4 tasoinen osaaminen tarkoittaa edellisen tason osaamisen lisäksi muiden alkeisfunktioiden ja yhdistettyjen funktioiden derivointi- ja integrointisääntöjen hallintaa sekä osaamista kompleksilukulaskennassa ja raja-arvolaskennassa.

Assessment criteria, excellent (5)

Arvosana 5 edellyttää vähintään 88 % kurssipisteistä = 88p

Arvosanan 5 tasoinen osaaminen tarkoittaa edellisten tasojen osaamisen lisäksi kykyä tunnistaa ja ratkoa yksinkertaisia differentiaaliyhtälöitä.

Enrollment

30.05.2024 - 01.09.2024

Timing

02.09.2024 - 18.12.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

0 - 50

Degree programmes
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Tuomas Nurmi
  • COS Opettaja
Groups
  • PEYTES23A

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Materials

Tuomenlehto, Holmlund et al.: Insinöörin matematiikka. Edita.
Itslearning-sivujen kautta jaettava muu materiaali.

Teaching methods

Sulautuva oppiminen, lähiopetus, tehtäväperustaisuus, itsenäinen opiskelu, tiimityö

Opintojaksolla opiskellaan matemaattisia perustaitoja, jotka ovat insinöörityön perusta. Esimerkit ja tehtävät sisältävät alakohtaisia sovellusesimerkkejä. Opintojaksolla käytetään englanninkielistä lähdemateriaalia ja tutustutaan kansainvälisiin matematiikan merkintätapoihin ja terminologiaan, mikä antaa opiskelijoille valmiuksia ymmärtää kansainvälistä insinöörialan kirjallisuutta, standardeja yms. Tehtävien ratkomisessa opiskelijoita kannustetaan tiimityöskentelyyn. Opintojaksolla käytetään monipuolisesti digitaalista opiskelumateriaalia ja sähköistä oppimisympäristöä.

Exam schedules

-Kaksi osakoetta opintojakson aikana, ajankohdat ilmoitetaan Itslearning-sivuilla.
-Opintojakson päätyttyä kaksi uusintakoetta, joissa voi uusia valinnaisesti kumman tahansa osakokeista.

International connections

Opintojakso toteutetaan lähiopetuksena kampuksella. Kurssi etenee viikkoteemoittan seuraavasti:
1. Opiskelijat tutustuvat itsenäisesti teeman aihepiiriin oppikirjan, opettajan tekemien opetusvideoiden ja erilaisten tukimateriaalien avulla (jaetaan Itslearningissä). Opettajan tekemät opetusvideot toimivat opintojakson luentoina.
2. Opiskelijat harjoittelevat viikkoteeman asioita tekemällä laskuharjoituksia itsenäisesti ja pienryhmissä.
3. Viikoittain, yleensä torstaisin, on laskuharjoitustilaisuus, jossa opettaja ohjaa laskuissa ja neuvoo avoimeksi jääneissä kysymyksissä. Opiskelijat viimeistelevät laskuharjoituksensa tässä tilaisuudessa. Valmiit laskuharjoitukset palautetaan esittelemällä ne laskuharjoitustilaisuudessa opettajalle aikataulun mukaisesti.
4. Opettaja julkaisee malliratkaisut tehtäviin.

Student workload

Kurssin laajuus on 5 op, eli siihen kuuluva työmäärä on noin 135 h.
Kokeisiin ja niihin valmistautumiseen tarvitaan noin 18 h. Täten kurssin 13 viikkoteemaa varten on käytettävissä 117 h eli 9 h viikkoteemaa kohti, mikä jakautuu seuraavasti:
-Itsenäinen työskentely ja ryhmätyöskentely 6 h.
-Opetustilaisuuteen osallistuminen 3 h.

Content scheduling

Aloitusluento 2.9. Lähiopetusta noin kerran viikossa viikkoteemoittain ryhmiteltynä viikoilla 36-51. Tarkempi aikataulu kurssin Itslearning-sivuilla.

Further information

Esitietona tarvitaan opintojakso Insinöörimatematiikan perusteet tai vastaavat tiedot ja taidot.

Evaluation scale

H-5

Assessment methods and criteria

Arviointi perustuu pisteisiin, joita kerätään laskuharjoituksista (max 10 p.) ja osakokeista (max 2*15 p.). Kurssin läpäistääkseen opiskelijan on saatava
-Kummastakin osakokeesta vähintään 4 pistettä ja
-Osakokeista ja laskuharjoituksista yhteensä vähintään 16 pistettä.

LASKUHARJOITUKSISTA SAATAVIEN PISTEIDEN MÄÄRÄYTYMINEN:
--Laskuharjoituksista saatavien hyvityspisteiden määrä = 10*palautettujen tehtävien osuus.

ARVOSANAN MÄÄRÄYTYMINEN:
Arvosana määräytyy pisteiden perusteella (osakokeiden ja laskuharjoitusten yhteispisteet) seuraavan taulukon mukaan:
Arvosana 1 vaatii 16 pistettä
Arvosana 2 vaatii 21 pistettä
Arvosana 3 vaatii 26 pistettä
Arvosana 4 vaatii 31 pistettä
Arvosana 5 vaatii 36 pistettä

Enrollment

01.12.2023 - 05.01.2024

Timing

08.01.2024 - 30.04.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Engineering and Business

Teaching languages
  • English
Degree programmes
  • Degree Programme in Biotechnology and Chemical Engineering
  • Degree Programme in Chemical and Materials Engineering
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Aaro Mustonen
Groups
  • PENERS23
    Energy and Environmental Engineering, S23

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Materials

The course follows the contents of Calculus 1 on the Open Stax website (https://openstax.org/details/books/calculus-volume-1)
In addition, the course uses other material presented online and during contact teaching sessions.
The MATLAB programme is also used during the course, so the student should have access to a personal computer.
The Finnish support book is "Insinöörin matematiikka, Tuomenlehto et.al."

Teaching methods

Methods supporting the construction of the student's own knowledge:
Contact teaching, online learning, collaborative learning, independent work.
The completion of exercises plays a key role in learning, and group work is encouraged in this respect.

Exam schedules

Subtests in weeks 9 and 17.

International connections

Learning methods that support the student's own activity and construction of knowledge

Student workload

- Theoretical areas and calculation exercises approx. 60 h
- Intermediate tests measuring competence 2 x 2 h (or final exam 2 h)
- Independent practical training approximately 70 h (approximately 4 hours/week + practical training for tests/tests)

Content scheduling

The basics of differential and integral calculations and differential equations are discussed in the course. In addition, the pupils familiarise themselves with complex numbers and limit values. The aim is to expand the basis of mathematical thinking needed in engineering studies and tasks as well as the ability to read and use the language of mathematics in professional contexts. In addition, the aim is to familiarise yourself with the use of MATLAB software in modelling and solving mathematical problems. The aim of the course is to use as many examples of engineering work as possible.

More detailed content:
- complex numbers and their applications
- limit values and definition of derivative
- derivation calculation rules
- the concept of differential
- deriving applications
- a specific integral and integral function
- integral calculation rules
- integrated applications
- differential equations and solving them
- differential equation applications

Evaluation scale

H-5

Assessment methods and criteria

In English
The total grade 0-5 for the course is calculated using the course points collected (max 100 points). Course points can be collected
- Two sub-tests (á max 50 p)
- Independent exercises at ViLLE (max. 6 points)
- Weekly calculation exercises (max 12 pts). A precondition for receiving the course points is returning calculation tasks in advance and a self-evaluation based on calculation lesson or model solutions, which has been returned by the normative duration of studies (usually by the end of the week).

The total number of course points collected from the exercises is 18 p, corresponding to approximately 1.5 course numbers.

Students who complete the course with intermediate exams must take both exams. If the completion of the second intermediate exam is exhausted, the course will be renewed with the exam.

Assessment criteria, fail (0)

The student does not achieve at least 40% of the course points = 40p
The student has not participated in both midterm exams.

Assessment criteria, satisfactory (1-2)

Grade 1 requires at least 40% of the course points = 40p
Grade 2 requires at least 52% of the course points = 52p

Assessment criteria, good (3-4)

A grade of 3 requires at least 40% of the course points = 64p
A grade of 4 requires at least 52% of the course points = 76p

Assessment criteria, excellent (5)

Grade 5 requires at least 88% of the course points = 88p

Enrollment

01.12.2023 - 05.01.2024

Timing

08.01.2024 - 10.05.2024

Number of ECTS credits allocated

5 op

Virtual portion

4 op

Mode of delivery

20 % Contact teaching, 80 % Distance learning

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

60 - 90

Degree programmes
  • Degree Programme in Biotechnology and Chemical Engineering
  • Degree Programme in Chemical and Materials Engineering
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Hannele Kuusisto
Groups
  • PSAHAUS23
    Electrical and Automation Engineering, Bachelor of Engineering
  • PEYTES23B

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Evaluation scale

H-5

Enrollment

01.12.2022 - 16.01.2023

Timing

09.01.2023 - 28.04.2023

Number of ECTS credits allocated

5 op

Virtual portion

3 op

Mode of delivery

40 % Contact teaching, 60 % Distance learning

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

0 - 70

Degree programmes
  • Degree Programme in Biotechnology and Chemical Engineering
  • Degree Programme in Chemical and Materials Engineering
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Hannele Kuusisto
Groups
  • PEYTES22A
    PEYTES22A

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Evaluation scale

H-5

Enrollment

01.12.2022 - 16.01.2023

Timing

09.01.2023 - 28.04.2023

Number of ECTS credits allocated

5 op

Virtual portion

3 op

Mode of delivery

40 % Contact teaching, 60 % Distance learning

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

0 - 70

Degree programmes
  • Degree Programme in Biotechnology and Chemical Engineering
  • Degree Programme in Chemical and Materials Engineering
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Hannele Kuusisto
Groups
  • PEYTES22B
    PEYTES22B

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Evaluation scale

H-5

Enrollment

01.12.2021 - 18.01.2022

Timing

10.01.2022 - 29.04.2022

Number of ECTS credits allocated

5 op

Virtual portion

3 op

Mode of delivery

40 % Contact teaching, 60 % Distance learning

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

40 - 50

Degree programmes
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Hannele Kuusisto
Groups
  • PEYTES21A
    PEYTES21A
  • PEYTES21

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Evaluation scale

H-5

Enrollment

01.12.2021 - 18.01.2022

Timing

10.01.2022 - 29.04.2022

Number of ECTS credits allocated

5 op

Virtual portion

3 op

Mode of delivery

40 % Contact teaching, 60 % Distance learning

Unit

Engineering and Business

Campus

Kupittaa Campus

Teaching languages
  • Finnish
Seats

40 - 60

Degree programmes
  • Degree Programme in Energy and Environmental Technology
Teachers
  • Hannele Kuusisto
Groups
  • PEYTES21B
    PEYTES21B
  • PEYTES21

Objective

Student understands the basic of calculus and is able to
• Apply the derivative to analyze functions
• Apply differentials for error calculations
• Apply the definite integrals, e.g., in calculation of area or average
• Apply differential equations for modeling phenomena within engineering framework

Content

• Limit of a function
• Derivative function
• Differentials
• Integral function
• Definite integral
• Separable differential equations
• Linear differential equations

Evaluation scale

H-5